Menu Close

x-1-x-1-1-e-t-dt-x-R-prove-that-x-2ln-1-1-e-x-1-1-e-x-1-




Question Number 80612 by M±th+et£s last updated on 04/Feb/20
 Ψ(x)=∫_1 ^x (1/( (√(1−e^t )))) dt     ∀x∈R  prove that  Ψ(x)=2ln(((1−(√(1−e^x )))/(1−(√(1−e)))))−x+1
Ψ(x)=1x11etdtxRprovethatΨ(x)=2ln(11ex11e)x+1
Commented by mathmax by abdo last updated on 04/Feb/20
1−e<0 so there is aerror in the question!
1e<0sothereisaerrorinthequestion!
Commented by mathmax by abdo last updated on 04/Feb/20
perhaps Φ(x)=∫_1 ^x  (dt/( (√(1−e^(−t) ))))  or Φ(x)=∫_1 ^x  (dt/( (√(1+e^t )))) or Φ(x)=∫_1 ^x  (dt/( (√(1+e^(−t) ))))
perhapsΦ(x)=1xdt1etorΦ(x)=1xdt1+etorΦ(x)=1xdt1+et
Commented by mathmax by abdo last updated on 04/Feb/20
let take  Φ(x)=∫_1 ^(x )  (dt/( (√(1−e^(−t) ))))  changement (√(1−e^(−t) ))=u give  1−e^(−t) =u^2  ⇒e^(−t) =1−u^2  ⇒−t=ln(1−u^2 ) ⇒t=−ln(1−u^2 ) ⇒  Φ(x)= ∫_(√(1−e^(−1) )) ^(√(1−e^(−x) ))       ((2u)/((1−u^2 )u))du =2 ∫_(√(1−e^(−1) )) ^(√(1−e^(−x) ))     (du/((1−u)(1+u)))  =∫_(√(1−e^(−1) )) ^(√(1−e^(−x) ))    {(1/(1+u))+(1/(1−u))}du=[ln∣((1+u)/(1−u))∣]_(√(1−e^(−1) )) ^(√(1−e^(−x) ))   =ln∣((1+(√(1−e^(−x) )))/(1−(√(1−e^(−x) ))))∣−ln∣((1+(√(1−e^(−1) )))/(1−(√(1−e^(−1) ))))∣★
lettakeΦ(x)=1xdt1etchangement1et=ugive1et=u2et=1u2t=ln(1u2)t=ln(1u2)Φ(x)=1e11ex2u(1u2)udu=21e11exdu(1u)(1+u)=1e11ex{11+u+11u}du=[ln1+u1u]1e11ex=ln1+1ex11exln1+1e111e1

Leave a Reply

Your email address will not be published. Required fields are marked *