Menu Close

x-1-x-1-3-dx-




Question Number 20540 by tammi last updated on 28/Aug/17
∫((√x)/(1+x^(1/3) ))dx
$$\int\frac{\sqrt{{x}}}{\mathrm{1}+{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dx} \\ $$
Answered by $@ty@m last updated on 31/Aug/17
Let x=t^6     (Remark: LCM of 3 & 2=6)  ⇒dx=6t^5 dt  ∴∫((√x)/(1+x^(1/3) ))dx=∫((t^3 .6t^5 )/(1+t^2 ))dt  =6∫(t^8 /(1+t^2 ))dt  =6∫(t^6 −t^4 +t^2 −1+(1/(1+t^2 )))dt (see Note below)  =6[(t^7 /7)−(t^5 /5)+(t^3 /3)−t+tan^(−1) t]+C   Note:                t^6 −t^4 +t^2 −1               −−−−−−−−    t^2 +1∣^(  ) t^8                 t^8 +t^6                 −−−−                     −t^6                      −t^6 −t^4                     −−−−−                                t^4                                 t^4 +t^2                               −−−−                                    −t^2                                     −t^2 −1                                    −−−−                                               1
$${Let}\:{x}={t}^{\mathrm{6}} \:\:\:\:\left({Remark}:\:{LCM}\:{of}\:\mathrm{3}\:\&\:\mathrm{2}=\mathrm{6}\right) \\ $$$$\Rightarrow{dx}=\mathrm{6}{t}^{\mathrm{5}} {dt} \\ $$$$\therefore\int\frac{\sqrt{{x}}}{\mathrm{1}+{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dx}=\int\frac{{t}^{\mathrm{3}} .\mathrm{6}{t}^{\mathrm{5}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{6}\int\frac{{t}^{\mathrm{8}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{6}\int\left({t}^{\mathrm{6}} −{t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt}\:\left({see}\:{Note}\:{below}\right) \\ $$$$=\mathrm{6}\left[\frac{{t}^{\mathrm{7}} }{\mathrm{7}}−\frac{{t}^{\mathrm{5}} }{\mathrm{5}}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}}−{t}+{tan}^{−\mathrm{1}} {t}\right]+{C}\: \\ $$$${Note}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}^{\mathrm{6}} −{t}^{\mathrm{4}} +{t}^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−− \\ $$$$\:\:{t}^{\mathrm{2}} +\mathrm{1}\overset{\:\:} {\mid}{t}^{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}^{\mathrm{8}} +{t}^{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{t}^{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{t}^{\mathrm{6}} −{t}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{t}^{\mathrm{4}} +{t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{t}^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *