Menu Close

x-1-x-2-be-the-roots-of-the-equation-x-2-x-m-0-amp-x-1-5-x-2-5-2021-Find-the-sum-of-the-possible-values-of-m-




Question Number 161066 by blackmamba last updated on 11/Dec/21
 x_1  ,x_2  be the roots of the equation         x^2 +x+m=0 & x_1 ^5 +x_2 ^5  = 2021.   Find the sum of the possible values    of m.
x1,x2betherootsoftheequationx2+x+m=0&x15+x25=2021.Findthesumofthepossiblevaluesofm.
Answered by cortano last updated on 11/Dec/21
 ⇒x^2 +x+m = 0 → { ((x_1 +x_2 =−1)),((x_1 x_2 = m)) :}   ⇒x_1 ^2 +x_2 ^2 = 1−2m  ⇒x_1 ^3 +x_2 ^3  = 3m−1  ⇒(x_1 ^3 +x_2 ^3 )(x_1 ^2 +x_2 ^2 )=(3m−1)(1−2m)  ⇒x_1 ^5 +x_2 ^5 +(x_1 x_2 )^2 (x_1 +x_2 )=−6m^2 +5m−1  ⇒2021−m^2 +6m^2 −5m+1=0  ⇒5m^2 −5m+2022=0  ⇒Σ_(i=1) ^2 m_i  = 1
x2+x+m=0{x1+x2=1x1x2=mx12+x22=12mx13+x23=3m1(x13+x23)(x12+x22)=(3m1)(12m)x15+x25+(x1x2)2(x1+x2)=6m2+5m12021m2+6m25m+1=05m25m+2022=02i=1mi=1
Answered by TheSupreme last updated on 11/Dec/21
let,s x_1 =a x_2 =b  ab=m  a+b=1  (a+b)^5 =−1=a^5 +b^5 +5a^4 b+10a^3 b^2 +10a^2 b^3 +5ab^4 +b^5   −1=2021+5a^3 m−10m^2 +5mb^3   −2022=5m(a^3 +b^3 )−10m^2   (a^3 +b^3 )=(a+b)(a^2 −ab+b^2 )=−((a+b)^2 −3ab)=−(1−3m)=3m−1  −2022=5m(3m−1)−10m^2   −2022=5m^2 −5m  no solutions Δ<0.  sum all possible valye =0
let,sx1=ax2=bab=ma+b=1(a+b)5=1=a5+b5+5a4b+10a3b2+10a2b3+5ab4+b51=2021+5a3m10m2+5mb32022=5m(a3+b3)10m2(a3+b3)=(a+b)(a2ab+b2)=((a+b)23ab)=(13m)=3m12022=5m(3m1)10m22022=5m25mnosolutionsΔ<0.sumallpossiblevalye=0
Commented by cortano last updated on 11/Dec/21
false
false

Leave a Reply

Your email address will not be published. Required fields are marked *