Menu Close

x-1-x-2-x-1-x-2-2-x-




Question Number 79147 by jagoll last updated on 23/Jan/20
(√(x+(1/x^2 )))+(√(x−(1/x^2 ) ))≤(2/x)
$$\sqrt{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}+\sqrt{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:}\leqslant\frac{\mathrm{2}}{\mathrm{x}} \\ $$
Answered by john santu last updated on 23/Jan/20
(√((x^3 +1)/x^2 ))+(√((x^3 −1)/x^2 ))≤(2/x)  (i)x≥−1 ∧x≥1∧x≠0  (ii) (((√(x^3 +1))+(√(x^3 −1)))/x)≤(2/x)   ⇒(√(x^3 +1))+(√(x^3 −1))≤2  let x^3 =t⇒(√(t+1))+(√(t−1)) ≤2  2t+2(√(t^2 −1))≤4  (√(t^2 −1)) ≤2−t⇒t^2 −1≤4−4t+t^2   4t≤5 ⇒t≤(5/4) ⇒x^3 ≤(5/4)  x≤((5/4))^(1/(3 )) . now we get solution  x≥1 ∧x≤((5/4))^(1/(3 ))  ⇒ x∈[1,((5/4))^(1/(3 )) ]
$$\sqrt{\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}^{\mathrm{2}} }}+\sqrt{\frac{{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{2}} }}\leqslant\frac{\mathrm{2}}{{x}} \\ $$$$\left({i}\right){x}\geqslant−\mathrm{1}\:\wedge{x}\geqslant\mathrm{1}\wedge{x}\neq\mathrm{0} \\ $$$$\left({ii}\right)\:\frac{\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}}{{x}}\leqslant\frac{\mathrm{2}}{{x}}\: \\ $$$$\Rightarrow\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2} \\ $$$${let}\:{x}^{\mathrm{3}} ={t}\Rightarrow\sqrt{{t}+\mathrm{1}}+\sqrt{{t}−\mathrm{1}}\:\leqslant\mathrm{2} \\ $$$$\mathrm{2}{t}+\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\leqslant\mathrm{4} \\ $$$$\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\:\leqslant\mathrm{2}−{t}\Rightarrow{t}^{\mathrm{2}} −\mathrm{1}\leqslant\mathrm{4}−\mathrm{4}{t}+{t}^{\mathrm{2}} \\ $$$$\mathrm{4}{t}\leqslant\mathrm{5}\:\Rightarrow{t}\leqslant\frac{\mathrm{5}}{\mathrm{4}}\:\Rightarrow{x}^{\mathrm{3}} \leqslant\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${x}\leqslant\sqrt[{\mathrm{3}\:}]{\frac{\mathrm{5}}{\mathrm{4}}}.\:{now}\:{we}\:{get}\:{solution} \\ $$$${x}\geqslant\mathrm{1}\:\wedge{x}\leqslant\sqrt[{\mathrm{3}\:}]{\frac{\mathrm{5}}{\mathrm{4}}}\:\Rightarrow\:{x}\in\left[\mathrm{1},\sqrt[{\mathrm{3}\:}]{\frac{\mathrm{5}}{\mathrm{4}}}\right] \\ $$$$ \\ $$
Commented by jagoll last updated on 23/Jan/20
thank you sir. your solution is  fantastic
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{your}\:\mathrm{solution}\:\mathrm{is} \\ $$$$\mathrm{fantastic} \\ $$
Commented by jagoll last updated on 23/Jan/20
good sir
$$\mathrm{good}\:\mathrm{sir} \\ $$
Commented by MJS last updated on 23/Jan/20
nice and right, but (just saying):  (i) x≥−1∧x≥1∧x≠0 ⇒ x≥1  squaring without substituting t isn′t any harder:  0≤(√(x^3 +1))+(√(x^3 −1))≤2     ∣^2   0≤2x^3 +2(√(x^3 +1))(√(x^3 −1))≤4  −x^3 ≤(√(x^3 +1))(√(x^3 −1))≤2−x^3   but we know that 0≤(√(x^3 +1))(√(x^3 −1))  ⇒ 0≤4−x^3  ⇒ x≤(2)^(1/3)   0≤(√(x^3 +1))(√(x^3 −1))≤2−x^3      ∣^2   0≤x^6 −1≤x^6 −4x^3 +4  0≤x^3 ≤(5/4)  0≤x≤((5/4))^(1/3)   but x≥1  ⇒  1≤x≤((5/4))^(1/3)
$$\mathrm{nice}\:\mathrm{and}\:\mathrm{right},\:\mathrm{but}\:\left(\mathrm{just}\:\mathrm{saying}\right): \\ $$$$\left({i}\right)\:{x}\geqslant−\mathrm{1}\wedge{x}\geqslant\mathrm{1}\wedge{x}\neq\mathrm{0}\:\Rightarrow\:{x}\geqslant\mathrm{1} \\ $$$$\mathrm{squaring}\:\mathrm{without}\:\mathrm{substituting}\:{t}\:\mathrm{isn}'\mathrm{t}\:\mathrm{any}\:\mathrm{harder}: \\ $$$$\mathrm{0}\leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2}\:\:\:\:\:\mid^{\mathrm{2}} \\ $$$$\mathrm{0}\leqslant\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{4} \\ $$$$−{x}^{\mathrm{3}} \leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2}−{x}^{\mathrm{3}} \\ $$$$\mathrm{but}\:\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:\mathrm{0}\leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{0}\leqslant\mathrm{4}−{x}^{\mathrm{3}} \:\Rightarrow\:{x}\leqslant\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$$\mathrm{0}\leqslant\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}\sqrt{{x}^{\mathrm{3}} −\mathrm{1}}\leqslant\mathrm{2}−{x}^{\mathrm{3}} \:\:\:\:\:\mid^{\mathrm{2}} \\ $$$$\mathrm{0}\leqslant{x}^{\mathrm{6}} −\mathrm{1}\leqslant{x}^{\mathrm{6}} −\mathrm{4}{x}^{\mathrm{3}} +\mathrm{4} \\ $$$$\mathrm{0}\leqslant{x}^{\mathrm{3}} \leqslant\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\sqrt[{\mathrm{3}}]{\frac{\mathrm{5}}{\mathrm{4}}} \\ $$$$\mathrm{but}\:{x}\geqslant\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{1}\leqslant{x}\leqslant\sqrt[{\mathrm{3}}]{\frac{\mathrm{5}}{\mathrm{4}}} \\ $$
Commented by john santu last updated on 23/Jan/20
yes depending on the direction  of our view sir
$${yes}\:{depending}\:{on}\:{the}\:{direction} \\ $$$${of}\:{our}\:{view}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *