Menu Close

x-1-x-2-x-1-x-2-2-x-




Question Number 79147 by jagoll last updated on 23/Jan/20
(√(x+(1/x^2 )))+(√(x−(1/x^2 ) ))≤(2/x)
x+1x2+x1x22x
Answered by john santu last updated on 23/Jan/20
(√((x^3 +1)/x^2 ))+(√((x^3 −1)/x^2 ))≤(2/x)  (i)x≥−1 ∧x≥1∧x≠0  (ii) (((√(x^3 +1))+(√(x^3 −1)))/x)≤(2/x)   ⇒(√(x^3 +1))+(√(x^3 −1))≤2  let x^3 =t⇒(√(t+1))+(√(t−1)) ≤2  2t+2(√(t^2 −1))≤4  (√(t^2 −1)) ≤2−t⇒t^2 −1≤4−4t+t^2   4t≤5 ⇒t≤(5/4) ⇒x^3 ≤(5/4)  x≤((5/4))^(1/(3 )) . now we get solution  x≥1 ∧x≤((5/4))^(1/(3 ))  ⇒ x∈[1,((5/4))^(1/(3 )) ]
x3+1x2+x31x22x(i)x1x1x0(ii)x3+1+x31x2xx3+1+x312letx3=tt+1+t122t+2t214t212tt2144t+t24t5t54x354x543.nowwegetsolutionx1x543x[1,543]
Commented by jagoll last updated on 23/Jan/20
thank you sir. your solution is  fantastic
thankyousir.yoursolutionisfantastic
Commented by jagoll last updated on 23/Jan/20
good sir
goodsir
Commented by MJS last updated on 23/Jan/20
nice and right, but (just saying):  (i) x≥−1∧x≥1∧x≠0 ⇒ x≥1  squaring without substituting t isn′t any harder:  0≤(√(x^3 +1))+(√(x^3 −1))≤2     ∣^2   0≤2x^3 +2(√(x^3 +1))(√(x^3 −1))≤4  −x^3 ≤(√(x^3 +1))(√(x^3 −1))≤2−x^3   but we know that 0≤(√(x^3 +1))(√(x^3 −1))  ⇒ 0≤4−x^3  ⇒ x≤(2)^(1/3)   0≤(√(x^3 +1))(√(x^3 −1))≤2−x^3      ∣^2   0≤x^6 −1≤x^6 −4x^3 +4  0≤x^3 ≤(5/4)  0≤x≤((5/4))^(1/3)   but x≥1  ⇒  1≤x≤((5/4))^(1/3)
niceandright,but(justsaying):(i)x1x1x0x1squaringwithoutsubstitutingtisntanyharder:0x3+1+x312202x3+2x3+1x314x3x3+1x312x3butweknowthat0x3+1x3104x3x230x3+1x312x320x61x64x3+40x3540x543butx11x543
Commented by john santu last updated on 23/Jan/20
yes depending on the direction  of our view sir
yesdependingonthedirectionofourviewsir

Leave a Reply

Your email address will not be published. Required fields are marked *