Menu Close

x-1-x-2-x-2-2x-1-1-3-2x-1-1-3-3-x-R-




Question Number 160883 by cortano last updated on 08/Dec/21
 (√(x+1)) = ((x^2 −x−2 ((2x+1))^(1/3) )/( ((2x+1))^(1/3)  −3 ))    x ∈R
$$\:\sqrt{\mathrm{x}+\mathrm{1}}\:=\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{2}\:\sqrt[{\mathrm{3}}]{\mathrm{2x}+\mathrm{1}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2x}+\mathrm{1}}\:−\mathrm{3}\:}\: \\ $$$$\:\mathrm{x}\:\in\mathbb{R}\: \\ $$
Answered by MJS_new last updated on 08/Dec/21
this looks suspicious to me because  (√(ϕ+1))=(2ϕ+1)^(1/3) =ϕ with ϕ=(1/2)+((√5)/2)  and ϕ^2 −ϕ=1  testing ⇒ it′s true! x=(1/2)+((√5)/2)  and then obviously x=0 is a solution
$$\mathrm{this}\:\mathrm{looks}\:\mathrm{suspicious}\:\mathrm{to}\:\mathrm{me}\:\mathrm{because} \\ $$$$\sqrt{\varphi+\mathrm{1}}=\left(\mathrm{2}\varphi+\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} =\varphi\:\mathrm{with}\:\varphi=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{and}\:\varphi^{\mathrm{2}} −\varphi=\mathrm{1} \\ $$$$\mathrm{testing}\:\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{true}!\:{x}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{then}\:\mathrm{obviously}\:{x}=\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *