Menu Close

x-1-x-2-x-dx-




Question Number 83960 by john santu last updated on 08/Mar/20
∫ ((x−1)/( (√(x^2 −x)))) dx ?
$$\int\:\frac{\mathrm{x}−\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}}}\:\mathrm{dx}\:?\: \\ $$
Commented by mathmax by abdo last updated on 08/Mar/20
I =∫ ((x−1)/( (√(x^2 −x))))dx ⇒ I =(1/2)∫ ((2x−1−1)/( (√(x^2 −x))))dx  =(1/2)∫ ((2x−1)/( (√(x^2 −x))))dx  −(1/2)∫  (dx/( (√(x^2 −x))))  we have  ∫  ((2x−1)/(2(√(x^2 −x))))dx =(√(x^2 −x)) +c_1   ∫ (dx/( (√(x^2 −x)))) =∫ (dx/( (√(x(x−1))))) =∫  (dx/( (√x)(√(x−1)))) =_((√x)=t)   ∫  ((2tdt)/(t(√(t^2 −1))))  =2 ∫  (dt/( (√(t^2 −1))))  =2ln(t+(√(t^2 −1))) +c_2 =2ln((√x)+(√(x−1))) +c_2  ⇒  I =(√(x^2 −x)) −ln((√x)+(√(x−1))) +C
$${I}\:=\int\:\frac{{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −{x}}}{dx}\:\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{2}{x}−\mathrm{1}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −{x}}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −{x}}}{dx}\:\:−\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −{x}}}\:\:{we}\:{have} \\ $$$$\int\:\:\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} −{x}}}{dx}\:=\sqrt{{x}^{\mathrm{2}} −{x}}\:+{c}_{\mathrm{1}} \\ $$$$\int\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} −{x}}}\:=\int\:\frac{{dx}}{\:\sqrt{{x}\left({x}−\mathrm{1}\right)}}\:=\int\:\:\frac{{dx}}{\:\sqrt{{x}}\sqrt{{x}−\mathrm{1}}}\:=_{\sqrt{{x}}={t}} \:\:\int\:\:\frac{\mathrm{2}{tdt}}{{t}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\mathrm{2}\:\int\:\:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:\:=\mathrm{2}{ln}\left({t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)\:+{c}_{\mathrm{2}} =\mathrm{2}{ln}\left(\sqrt{{x}}+\sqrt{{x}−\mathrm{1}}\right)\:+{c}_{\mathrm{2}} \:\Rightarrow \\ $$$${I}\:=\sqrt{{x}^{\mathrm{2}} −{x}}\:−{ln}\left(\sqrt{{x}}+\sqrt{{x}−\mathrm{1}}\right)\:+{C} \\ $$
Answered by john santu last updated on 08/Mar/20
Answered by Kunal12588 last updated on 08/Mar/20
x−1=A(d/dx)(x^2 −x)+B  ⇒x−1=2Ax−(A−B)  A=(1/2),  A−B=1 ⇒B=−(1/2)  I=(1/2)∫(( (d/dx)(x^2 −x))/( (√(x^2 −x))))−(1/2)∫(dx/( (√((x−(1/2))^2 −((1/2))^2 ))))  I=(√(x^2 −x))−(1/2)log∣x−(1/2)+(√(x^2 −x))∣+c  I=(√(x^2 −x))−(1/2)log∣2x−1+2(√(x^2 −x))∣+c  I=(√(x^2 −x))−(1/2)log∣((√x))^2 +2(√x)(√(x−1))+((√(x−1)))^2 ∣+c  I=(√(x^2 −x))−log∣(√x)+(√(x−1))∣+c
$${x}−\mathrm{1}={A}\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} −{x}\right)+{B} \\ $$$$\Rightarrow{x}−\mathrm{1}=\mathrm{2}{Ax}−\left({A}−{B}\right) \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}},\:\:{A}−{B}=\mathrm{1}\:\Rightarrow{B}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\:\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} −{x}\right)}{\:\sqrt{{x}^{\mathrm{2}} −{x}}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{\:\sqrt{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }} \\ $$$${I}=\sqrt{{x}^{\mathrm{2}} −{x}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\mid{x}−\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{{x}^{\mathrm{2}} −{x}}\mid+{c} \\ $$$${I}=\sqrt{{x}^{\mathrm{2}} −{x}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\mid\mathrm{2}{x}−\mathrm{1}+\mathrm{2}\sqrt{{x}^{\mathrm{2}} −{x}}\mid+{c} \\ $$$${I}=\sqrt{{x}^{\mathrm{2}} −{x}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\mid\left(\sqrt{{x}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{{x}}\sqrt{{x}−\mathrm{1}}+\left(\sqrt{{x}−\mathrm{1}}\right)^{\mathrm{2}} \mid+{c} \\ $$$${I}=\sqrt{{x}^{\mathrm{2}} −{x}}−{log}\mid\sqrt{{x}}+\sqrt{{x}−\mathrm{1}}\mid+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *