Menu Close

x-1-x-2-y-1-y-2-1-What-is-the-value-of-x-y-2-




Question Number 191484 by MATHEMATICSAM last updated on 24/Apr/23
(x + (√(1 + x^2 )))(y + (√(1 + y^2 ))) = 1  What is the value of (x + y)^2  ?
$$\left({x}\:+\:\sqrt{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\right)\left({y}\:+\:\sqrt{\mathrm{1}\:+\:{y}^{\mathrm{2}} }\right)\:=\:\mathrm{1} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left({x}\:+\:{y}\right)^{\mathrm{2}} \:? \\ $$
Answered by witcher3 last updated on 24/Apr/23
ln(x+(√(1+x^2 ))) +ln(y+(√(1+y^2 )))=0  ⇔y+(√(y^2 +1))=(1/(x+(√(1+x^2 ))))=(√(1+x^2 ))−x  ⇒let f(t)=y+(√(1+y^2 ))  f′(t)=1+(y/( (√(1+y^2 ))))>0....E  we have f(y)=f(−x)⇒ withe E y=−x
$$\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\:+\mathrm{ln}\left(\mathrm{y}+\sqrt{\left.\mathrm{1}+\mathrm{y}^{\mathrm{2}} \right)}=\mathrm{0}\right. \\ $$$$\Leftrightarrow\mathrm{y}+\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}=\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{x} \\ $$$$\Rightarrow\mathrm{let}\:\mathrm{f}\left(\mathrm{t}\right)=\mathrm{y}+\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} } \\ $$$$\mathrm{f}'\left(\mathrm{t}\right)=\mathrm{1}+\frac{\mathrm{y}}{\:\sqrt{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }}>\mathrm{0}….\mathrm{E} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{y}\right)=\mathrm{f}\left(−\mathrm{x}\right)\Rightarrow\:\mathrm{withe}\:\mathrm{E}\:\mathrm{y}=−\mathrm{x} \\ $$
Answered by mr W last updated on 24/Apr/23
x+(√(1+x^2 ))=(√(1+y^2 ))−y  x+(√(1+x^2 ))=−y+(√(1+(−y)^2 ))  ⇒x=−y   ⇒x+y=0 ⇒(x+y)^2 =0
$${x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }=\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }−{y} \\ $$$${x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }=−{y}+\sqrt{\mathrm{1}+\left(−{y}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{x}=−{y}\: \\ $$$$\Rightarrow{x}+{y}=\mathrm{0}\:\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *