Question Number 96746 by MJS last updated on 04/Jun/20
$$\int\frac{\sqrt{{x}}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}=? \\ $$$$\int\frac{\sqrt{{x}}}{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}{dx}=? \\ $$
Commented by bemath last updated on 04/Jun/20
I have no idea to solve this integral
Commented by MJS last updated on 05/Jun/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{everybody}! \\ $$$$\mathrm{how}\:\mathrm{to}\:\mathrm{reach} \\ $$$$\int\frac{\sqrt{{x}}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\mathrm{arcsin}\:\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{3}} }}\:? \\ $$
Answered by M±th+et+s last updated on 04/Jun/20
$$\int\frac{\sqrt{{x}}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx} \\ $$$${let}\:{x}={sin}^{\frac{\mathrm{2}}{\mathrm{3}}} {y}\:\:\:\:\:\:{dx}=\frac{\mathrm{2}{cos}\left({y}\right)}{\mathrm{3}\sqrt[{\mathrm{3}}]{{siny}}}{dy} \\ $$$$=\int\frac{\sqrt[{\mathrm{3}}]{{sin}\left({y}\right)}}{\left(\mathrm{1}+{sin}^{\mathrm{2}} \left({y}\right)\right){cosy}}.\frac{{cos}\left({y}\right)}{\:\sqrt[{\mathrm{3}}]{{sin}\left({y}\right)}}{dy} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\int\frac{\mathrm{1}}{\mathrm{1}+{sin}^{\mathrm{2}} \left({y}\right)}{dy}=\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{csc}^{\mathrm{2}} \left({y}\right)}{{csc}^{\mathrm{2}} \left({y}\right)+\mathrm{1}}{dy} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{csc}^{\mathrm{2}} \left({y}\right)}{{cot}^{\mathrm{2}} \left({y}\right)+\mathrm{2}}{dy}=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}{tan}\left({y}\right)\right)+{c} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}\right)+{c} \\ $$
Answered by Sourav mridha last updated on 04/Jun/20
$$\left(\mathrm{2}\right)..\boldsymbol{{let}},\boldsymbol{{x}}=\boldsymbol{{tan}}^{\frac{\mathrm{2}}{\mathrm{3}}} \boldsymbol{\alpha}\:\boldsymbol{{so}}\:\boldsymbol{{we}}\:\boldsymbol{{get}}.. \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{6}}\int\boldsymbol{{sec}}\left(\mathrm{2}\boldsymbol{\alpha}\right)\boldsymbol{{d}}\left(\mathrm{2}\boldsymbol{\alpha}\right)+\frac{\boldsymbol{\alpha}}{\mathrm{3}}+\boldsymbol{{c}} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{6}}\boldsymbol{{ln}}\left[\mathrm{t}\boldsymbol{{an}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}+\mathrm{tan}^{−\mathrm{1}} \left(\boldsymbol{{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)\right]\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}^{−\mathrm{1}} \left(\boldsymbol{{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)+\boldsymbol{{c}} \\ $$$$\mathrm{0}\boldsymbol{{r}}\:\boldsymbol{{Ans}}: \\ $$$$\:\:\:\:\:=\boldsymbol{{ln}}\left[\frac{\mathrm{1}+\boldsymbol{{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{1}−\boldsymbol{{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} }\right]^{\frac{\mathrm{1}}{\mathrm{6}}} +\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}^{−\mathrm{1}} \left(\boldsymbol{{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)+\boldsymbol{{c}} \\ $$
Answered by M±th+et+s last updated on 04/Jun/20
$$=\int\frac{\sqrt{{x}}}{{x}^{\mathrm{3}} \left({x}^{−\mathrm{3}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{3}} }\sqrt{{x}^{−\mathrm{3}} +\mathrm{1}}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{x}^{−\mathrm{4}} }{\left({x}^{−\mathrm{3}} +\mathrm{1}\right)\sqrt{{x}^{−\mathrm{3}} +\mathrm{1}}}{dx} \\ $$$$=\int\frac{\mathrm{1}}{\frac{{x}^{−\mathrm{3}} +\mathrm{1}}{\mathrm{2}}−\mathrm{1}}.\frac{{x}^{−\mathrm{4}} }{\mathrm{2}\sqrt{{x}^{−\mathrm{3}} +\mathrm{1}}}{dx} \\ $$$$=\int\frac{\mathrm{1}}{\mathrm{1}−\left(\sqrt{\frac{{x}^{−\mathrm{3}} +\mathrm{1}}{\mathrm{2}}}\right)^{\mathrm{2}} }.\frac{−{x}^{−\mathrm{4}} }{\mathrm{2}\sqrt{{x}^{−\mathrm{3}} +\mathrm{1}}}{dx} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}{tanh}^{−\mathrm{1}} \left(\sqrt{\frac{{x}^{−\mathrm{3}} +\mathrm{1}}{\mathrm{2}}}\right)+{c} \\ $$
Commented by MJS last updated on 05/Jun/20
$$\mathrm{great}! \\ $$