Menu Close

x-1-x-3-dx-




Question Number 116590 by bemath last updated on 05/Oct/20
 ∫ ((√x)/(1+x^3 )) dx =?
$$\:\int\:\frac{\sqrt{\mathrm{x}}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx}\:=? \\ $$
Answered by Olaf last updated on 05/Oct/20
u = x^(3/2) , du = (3/2)(√x)dx = (3/2)u^(1/3) dx  ∫(u^(1/3) /(1+u^2 )).(2/3).(du/u^(1/3) ) = (2/3)arctanu = (2/3)arctan(x^(3/2) )
$${u}\:=\:{x}^{\mathrm{3}/\mathrm{2}} ,\:{du}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\sqrt{{x}}{dx}\:=\:\frac{\mathrm{3}}{\mathrm{2}}{u}^{\mathrm{1}/\mathrm{3}} {dx} \\ $$$$\int\frac{{u}^{\mathrm{1}/\mathrm{3}} }{\mathrm{1}+{u}^{\mathrm{2}} }.\frac{\mathrm{2}}{\mathrm{3}}.\frac{{du}}{{u}^{\mathrm{1}/\mathrm{3}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}}\mathrm{arctan}{u}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\mathrm{arctan}\left({x}^{\mathrm{3}/\mathrm{2}} \right) \\ $$
Commented by bemath last updated on 05/Oct/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by Dwaipayan Shikari last updated on 05/Oct/20
∫((√x)/(1+x^3 ))dx=∫((2t^2 dt)/(1+(t^3 )^2 ))  =(2/3)∫(du/(1+u^2 ))                 t^3 =u  =(2/3)tan^(−1) u+C=(2/3)tan^(−1) x^(3/2) +C
$$\int\frac{\sqrt{\mathrm{x}}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\mathrm{dx}=\int\frac{\mathrm{2t}^{\mathrm{2}} \mathrm{dt}}{\mathrm{1}+\left(\mathrm{t}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\int\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{t}^{\mathrm{3}} =\mathrm{u} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{tan}^{−\mathrm{1}} \mathrm{u}+\mathrm{C}=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{tan}^{−\mathrm{1}} \mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}} +\mathrm{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *