Menu Close

x-1-x-3-x-R-x-2020-1-x-2020-mod-10-y-y-2-1-




Question Number 78880 by naka3546 last updated on 21/Jan/20
x + (1/x)  =  3   ,    x ∈ R  (x^(2020)  + (1/x^(2020) ))  mod (10)  =  y  y^2  − 1  =  ?
x+1x=3,xR(x2020+1x2020)mod(10)=yy21=?
Answered by mind is power last updated on 21/Jan/20
let U_n =x^n +(1/x^n )  U_0 =2,U_1 =3  U_(n+1) =(x+(1/x))U_n −U_(n−1)   ⇒U_(n+1) =3U_n −U_(n−1)   U_2 =7,U_3 =18⇒U_3 =8(10)  U_4 =7(10),U_5 =3(10),U_6 =2(10),U_7 =3(10)  U_8 =7(10),U_9 =8(10),U_(10) =7(10)  We got a Cycle  U_9 =U_3 =8(10),U_(10) =U_4 =7(10)  U_(3+6k) =U_3 =8(10),U_(4+6k) =U_4 =7(10)  U_(5+6k) =U_5 =3(10),U_(6(k+1)) =U_6 =2(10),U_(6(k+1)+1) =U_7 =3(10)  U_(6k+8) =7(10)  2020=6.(336)+4=6k+4  U_(2020) =U_(6k+4) =U_4 =7(10),y=7  y^2 −1=48
letUn=xn+1xnU0=2,U1=3Un+1=(x+1x)UnUn1Un+1=3UnUn1U2=7,U3=18U3=8(10)U4=7(10),U5=3(10),U6=2(10),U7=3(10)U8=7(10),U9=8(10),U10=7(10)WegotaCycleU9=U3=8(10),U10=U4=7(10)U3+6k=U3=8(10),U4+6k=U4=7(10)U5+6k=U5=3(10),U6(k+1)=U6=2(10),U6(k+1)+1=U7=3(10)U6k+8=7(10)2020=6.(336)+4=6k+4U2020=U6k+4=U4=7(10),y=7y21=48

Leave a Reply

Your email address will not be published. Required fields are marked *