Menu Close

x-1-x-3-x-x-1-




Question Number 164177 by mathlove last updated on 15/Jan/22
x+(1/x)=3  (x/( (√x)+1))=?
$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{3} \\ $$$$\frac{{x}}{\:\sqrt{{x}}+\mathrm{1}}=? \\ $$
Answered by mr W last updated on 15/Jan/22
x^2 −3x+1=0  x=((3±(√5))/2)=((6±2(√5))/4)=((((√5)±1)/2))^2   (√x)=(((√5)±1)/2)  (x/( (√x)+1))=(((3±(√5))/2)/((((√5)±1)/2)+1))=((3±(√5))/(2+(√5)±1))=1 or (√5)−2
$${x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{3}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}=\frac{\mathrm{6}\pm\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}=\left(\frac{\sqrt{\mathrm{5}}\pm\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\sqrt{{x}}=\frac{\sqrt{\mathrm{5}}\pm\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{x}}{\:\sqrt{{x}}+\mathrm{1}}=\frac{\frac{\mathrm{3}\pm\sqrt{\mathrm{5}}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{5}}\pm\mathrm{1}}{\mathrm{2}}+\mathrm{1}}=\frac{\mathrm{3}\pm\sqrt{\mathrm{5}}}{\mathrm{2}+\sqrt{\mathrm{5}}\pm\mathrm{1}}=\mathrm{1}\:{or}\:\sqrt{\mathrm{5}}−\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *