Menu Close

x-1-x-4-dx-




Question Number 122967 by bemath last updated on 21/Nov/20
  ∫ (x/( (√(1−x^4 )))) dx
$$\:\:\int\:\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:{dx}\: \\ $$
Answered by bobhans last updated on 21/Nov/20
let x^2  = sin t ⇒ 2x dx = cos t dt  ∅(x)=(1/2)∫ ((cos t dt)/( (√(1−sin^2 t)))) = (1/2)∫ dt   ∅(x) = (1/2)t + c = (1/2) arcsin (x^2 ) + c.
$${let}\:{x}^{\mathrm{2}} \:=\:\mathrm{sin}\:{t}\:\Rightarrow\:\mathrm{2}{x}\:{dx}\:=\:\mathrm{cos}\:{t}\:{dt} \\ $$$$\emptyset\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{cos}\:{t}\:{dt}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} {t}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:{dt}\: \\ $$$$\emptyset\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}{t}\:+\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{arcsin}\:\left({x}^{\mathrm{2}} \right)\:+\:{c}. \\ $$
Answered by TANMAY PANACEA last updated on 21/Nov/20
t=x^2 →dt=2xdx  (1/2)∫(dt/( (√(1−t^2 ))))=(1/2)sin^(−1) (t)+C  (1/2)sin^(−1) (x^2 )+C
$${t}={x}^{\mathrm{2}} \rightarrow{dt}=\mathrm{2}{xdx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left({t}\right)+{C} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *