Menu Close

x-1-x-4-then-x-2-1-x-2-




Question Number 165060 by mathlove last updated on 25/Jan/22
x−(1/x)=4  then x^2 −(1/x^2 )=?
$${x}−\frac{\mathrm{1}}{{x}}=\mathrm{4}\:\:{then}\:{x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=? \\ $$
Answered by TheSupreme last updated on 25/Jan/22
x^2 +(1/x^2 )=18  (x+(1/x))^2 =x^2 +(1/x^2 )+2=20  (x+(1/x))=(√(20))=±2(√5)  (x−(1/x))(x+(1/x))=±8(√5)    general  (x−(1/x))=t  x^2 +(1/x^2 )−2=t^2   (x^2 +(1/x^2 ))=t^2 +2  (x+(1/x))^2 =t^2 +2+2=t^2 +4  (x^2 −(1/x^2 ))=±t(√(t^2 +4))
$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{18} \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{2}=\mathrm{20} \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}\right)=\sqrt{\mathrm{20}}=\pm\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\left({x}−\frac{\mathrm{1}}{{x}}\right)\left({x}+\frac{\mathrm{1}}{{x}}\right)=\pm\mathrm{8}\sqrt{\mathrm{5}} \\ $$$$ \\ $$$${general} \\ $$$$\left({x}−\frac{\mathrm{1}}{{x}}\right)={t} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\mathrm{2}={t}^{\mathrm{2}} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)={t}^{\mathrm{2}} +\mathrm{2} \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} ={t}^{\mathrm{2}} +\mathrm{2}+\mathrm{2}={t}^{\mathrm{2}} +\mathrm{4} \\ $$$$\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=\pm{t}\sqrt{{t}^{\mathrm{2}} +\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *