Menu Close

x-1-x-5-x-5-1-x-5-




Question Number 42030 by Akashuac last updated on 17/Aug/18
x+(1/x)=5    x^5 +(1/x^5 )=?
x+1x=5x5+1x5=?
Commented by maxmathsup by imad last updated on 17/Aug/18
x+(1/x)=5 ⇒(x+(1/x))^5  =5^5  ⇒Σ_(k=0) ^5   C_5 ^k   x^k ((1/x))^(5−k)  =5^5  ⇒  Σ_(k=0) ^5  C_5 ^k  x^(2k−5)   =5^5  ⇒  x^(−5)  + 5 x^(−3)   + C_5 ^2  x^(−1)   +C_5 ^3 x  +5 x^3   +x^5  =5^5  ⇒  x^5  +x^(−5)   +5(x^3 +x^(−3) )  +C_5 ^2 (x+x^(−1) ) =5^5  ⇒  x^5  +x^(−5)  =5^5  −5(x^3 +x^(−3) ) −C_5 ^2 (x+(1/x))  but  (x+(1/x))^3  =5^3  ⇒ x^3  +3x^2 (1/x) +3x (1/x^2 ) +(1/x^3 ) =5^3  ⇒  x^3  +x^(−3)  +3(x+(1/x)) =5^3  ⇒x^3  +x^(−3)  =5^3 −3×5     we have  C_5 ^2  =((5!)/(2!3!))  =((5.4)/2) =10 ⇒x^5  +x^(−5)  =5^5  −5(5^3 −15)−10×5  =5^5 −5^4  +5×15 −50  = 5^4 ×4   +25   =4  ×25^2  +25  =4(((100)/4))^2  +25  =((10^4 )/4) +25   =((10000)/4) +25 =2500 +25 =2525 .
x+1x=5(x+1x)5=55k=05C5kxk(1x)5k=55k=05C5kx2k5=55x5+5x3+C52x1+C53x+5x3+x5=55x5+x5+5(x3+x3)+C52(x+x1)=55x5+x5=555(x3+x3)C52(x+1x)but(x+1x)3=53x3+3x21x+3x1x2+1x3=53x3+x3+3(x+1x)=53x3+x3=533×5wehaveC52=5!2!3!=5.42=10x5+x5=555(5315)10×5=5554+5×1550=54×4+25=4×252+25=4(1004)2+25=1044+25=100004+25=2500+25=2525.
Answered by MrW3 last updated on 17/Aug/18
x^5 +(1/x^5 )=  =(x+(1/x))(x^4 −x^3 ×(1/x)+x^2 ×(1/x^2 )−x×(1/x^3 )+(1/x^4 ))  =5(x^4 −x^2 +1−(1/x^2 )+(1/x^4 ))  =5(x^4 +(1/x^4 )+2x^2 ×(1/x^2 )−x^2 −(1/x^2 )−2x×(1/x)+1−2+2)  =5[(x^2 +(1/x^2 ))^2 −(x+(1/x))^2 +1]  =5[(x^2 +(1/x^2 )+2x×(1/x)−2)^2 −5^2 +1]  =5[{(x+(1/x))^2 −2}^2 −5^2 +1]  =5[{5^2 −2}^2 −5^2 +1]  =5[23^2 −5^2 +1]  =5[28×18+1]  =5×505  =2525  in general:  =a[(a^2 −2)^2 −a^2 +1]  =a[{a(a+1)−2}{(a−1)a−2}+1]
x5+1x5==(x+1x)(x4x3×1x+x2×1x2x×1x3+1x4)=5(x4x2+11x2+1x4)=5(x4+1x4+2x2×1x2x21x22x×1x+12+2)=5[(x2+1x2)2(x+1x)2+1]=5[(x2+1x2+2x×1x2)252+1]=5[{(x+1x)22}252+1]=5[{522}252+1]=5[23252+1]=5[28×18+1]=5×505=2525ingeneral:=a[(a22)2a2+1]=a[{a(a+1)2}{(a1)a2}+1]
Commented by Akashuac last updated on 17/Aug/18
Thanks you Boss
ThanksyouBoss
Answered by MJS last updated on 17/Aug/18
x+(1/x)=a  x^2 −ax+1=0  x=((a±(√(a^2 −4)))/2)  (1/x)=(2/(a±(√(a^2 −4))))=((2(a∓(√(a^2 −4))))/(a^2 −(a^2 −4)))=((a∓(√(a^2 −4)))/2)  we can write x as p±(√q) and (1/x) as p∓(√q)  p∈Q ⇒ x^n +(1/x^n )=[(p+(√q))^n +(p−(√q))^n ]∈Q ∀n∈Z  we only need to sum up the p^i ((√q))^j  with j=2k  n=5 ⇒ x^5 +(1/x^5 )=  =2(p^5 +10p^3 q+5pq^2 )=       [p=(a/2)  q=((a^2 −4)/4)]  =a(a^4 −5a^2 +5)=       [a=5]  =2525
x+1x=ax2ax+1=0x=a±a2421x=2a±a24=2(aa24)a2(a24)=aa242wecanwritexasp±qand1xaspqpQxn+1xn=[(p+q)n+(pq)n]QnZweonlyneedtosumupthepi(q)jwithj=2kn=5x5+1x5==2(p5+10p3q+5pq2)=[p=a2q=a244]=a(a45a2+5)=[a=5]=2525
Commented by Akashuac last updated on 17/Aug/18
thanks boss
thanksboss
Answered by malwaan last updated on 17/Aug/18
by using  (x+(1/x))^5 =5^5   (x+(1/x))^3 =5^3  we find  x^5 +(1/x^5 )=5^5 −10×5−      −5(5^3 −3×5)  =2525
byusing(x+1x)5=55(x+1x)3=53wefindx5+1x5=5510×55(533×5)=2525
Commented by Akashuac last updated on 17/Aug/18
thanks boss
thanksboss
Answered by math1967 last updated on 17/Aug/18
(x+(1/x))^2 =25  x^2 +(1/x^2 )=23.........1  x^3 +(1/x^3 )+3(x+(1/x))=125  x^3 +(1/x^3 )=125−15=110..........2  ∴(x^2 +(1/x^2 ))(x^3 +(1/x^3 ))=23×110  x^5 +(1/x^5 )+x+(1/x)=2530  ∴x^5 +(1/x^5 )=2530−5=2525
(x+1x)2=25x2+1x2=231x3+1x3+3(x+1x)=125x3+1x3=12515=110.2(x2+1x2)(x3+1x3)=23×110x5+1x5+x+1x=2530x5+1x5=25305=2525
Commented by Akashuac last updated on 17/Aug/18
thanks boss
thanksboss

Leave a Reply

Your email address will not be published. Required fields are marked *