Question Number 94609 by M±th+et+s last updated on 20/May/20

Answered by mathmax by abdo last updated on 20/May/20

Commented by M±th+et+s last updated on 20/May/20

Commented by mathmax by abdo last updated on 20/May/20

Answered by MJS last updated on 20/May/20
![I found this; integration is easy but inserting at the end is tricky... ∫((x^2 −1)/( (√(x+1))+(√(2x+3))))dx= [t=(√(2(x+1)))+(√(2x+3)) → dx=((2(√((x+1)(2x+3))))/(2(√(x+1))+(√(2(2x+3))))dt] =((√2)/(128))∫(((t−1)^3 (t+1)^3 (t^2 +1)(t^4 −18t^2 +1))/(t^6 ((1+(√2))t^2 −1+(√2))))dt= =Σ of the following: (1) −12(1−(√2))∫(dt/(t^2 +3−2(√2)))=12arctan ((1+(√2))t) (2) ((2−(√2))/(128))∫t^4 dt=((2−(√2))/(640))t^5 (3) −((50−27(√2))/(128))∫t^2 dt=−((50−27(√2))/(384))t^3 (4) ((166−109(√2))/(64))∫dt=((166−109(√2))/(64))t (5) −((166+109(√2))/(64))∫(dt/t^2 )=((166+109(√2))/(64t)) (6) ((50+27(√2))/(128))∫(dt/t^4 )=−((50+27(√2))/(384t^3 )) (7) −((2+(√2))/(128))∫(dt/t^6 )=((2+(√2))/(640t^5 )) = 12arctan ((1+(√2))((√(2(x+1)))+(√(2x+3)))) + −(2/5)(x^2 −3x+11)(√(x+1))+ +(1/(15))(6x^2 −17x+51)(√(2x+3)) +C](https://www.tinkutara.com/question/Q94666.png)
Commented by M±th+et+s last updated on 20/May/20
