Menu Close

x-2-1-x-2-dx-




Question Number 85813 by jagoll last updated on 25/Mar/20
∫ x^2  (√(1+x^2 )) dx ?
x21+x2dx?
Commented by jagoll last updated on 25/Mar/20
∫ (1/2)x (2x(√(1+x^2 )) ) dx =   ∫ (1/2)x (√(1+x^2 )) d(1+x^2 )  = (1/3)x (1+x^2 )^(3/2) −(1/3)∫ (1+x^2 )^(3/2)  dx  let J = ∫ (1+x^2 )^(3/2)  dx  [ x = tan t ]   J = ∫ sec^5  t dt   = sec^3 t tan t − ∫ 3 sec^5 t dt + ∫ 3sec^3  t dt  4J = sec^3  t tan t + 3 ( (1/2)sec t tan t −(1/2)ln∣sec t+tan t ∣)   J = (1/4) sec^3  t tan t + (3/8) sec t tan t −   (3/8) ln ∣ sec t + tan  t∣
12x(2x1+x2)dx=12x1+x2d(1+x2)=13x(1+x2)3/213(1+x2)3/2dxletJ=(1+x2)3/2dx[x=tant]J=sec5tdt=sec3ttant3sec5tdt+3sec3tdt4J=sec3ttant+3(12secttant12lnsect+tant)J=14sec3ttant+38secttant38lnsect+tant
Answered by john santu last updated on 25/Mar/20
let x = sinh t ⇒dx = cosh t dt  I = ∫ sinh^2 t cosh t (cosh t dt)  = ∫ sinh^2 t cosh^2 t dt   = (1/4)∫ sinh^2  2t dt   = (1/8) ∫ (cosh 4t−1) dt  = (1/8) (((sinh 4t)/4) − t ) + c  = (1/8) [( sinh t cosh t)(1+2sinh^2 t)−t ] +c  = (1/8) [ (x(√(1+x^2 )) )(1+2x^2 )−sinh^(−1)  x] + c
letx=sinhtdx=coshtdtI=sinh2tcosht(coshtdt)=sinh2tcosh2tdt=14sinh22tdt=18(cosh4t1)dt=18(sinh4t4t)+c=18[(sinhtcosht)(1+2sinh2t)t]+c=18[(x1+x2)(1+2x2)sinh1x]+c
Commented by jagoll last updated on 25/Mar/20
waw thank you sir. i try via integration  by parts
wawthankyousir.itryviaintegrationbyparts
Answered by MJS last updated on 25/Mar/20
∫x^2 (√(1+x^2 ))dx=       [x=sinh ln t =((t^2 −1)/(2t)) ⇔ t=x+(√(x^2 +1)) → dx=((t^2 +1)/(2t^2 ))]  =(1/(16))∫t^3 dt−(1/8)∫(dt/t)+(1/(16))∫(dt/t^5 )=  =(1/(64))t^4 −(1/8)ln t −(1/(64t^4 ))=((t^8 −1)/(64t^4 ))−(1/8)ln t =  =(1/8)(x(2x^2 +1)(√(x^2 +1))−ln (x+(√(x^2 +1)))) +C
x21+x2dx=[x=sinhlnt=t212tt=x+x2+1dx=t2+12t2]=116t3dt18dtt+116dtt5==164t418lnt164t4=t8164t418lnt==18(x(2x2+1)x2+1ln(x+x2+1))+C
Commented by jagoll last updated on 25/Mar/20
what formula sinh (ln x) sir?
whatformulasinh(lnx)sir?
Commented by MJS last updated on 25/Mar/20
it′s just as it is  I had the idea to use this when I had to  solve integrals in 2 steps, 1^(st)  a hyperbolic  substitution, 2^(nd)  get rid of e^t . you can do  it in one step
itsjustasitisIhadtheideatousethiswhenIhadtosolveintegralsin2steps,1stahyperbolicsubstitution,2ndgetridofet.youcandoitinonestep

Leave a Reply

Your email address will not be published. Required fields are marked *