Question Number 85813 by jagoll last updated on 25/Mar/20

Commented by jagoll last updated on 25/Mar/20
![∫ (1/2)x (2x(√(1+x^2 )) ) dx = ∫ (1/2)x (√(1+x^2 )) d(1+x^2 ) = (1/3)x (1+x^2 )^(3/2) −(1/3)∫ (1+x^2 )^(3/2) dx let J = ∫ (1+x^2 )^(3/2) dx [ x = tan t ] J = ∫ sec^5 t dt = sec^3 t tan t − ∫ 3 sec^5 t dt + ∫ 3sec^3 t dt 4J = sec^3 t tan t + 3 ( (1/2)sec t tan t −(1/2)ln∣sec t+tan t ∣) J = (1/4) sec^3 t tan t + (3/8) sec t tan t − (3/8) ln ∣ sec t + tan t∣](https://www.tinkutara.com/question/Q85816.png)
Answered by john santu last updated on 25/Mar/20
![let x = sinh t ⇒dx = cosh t dt I = ∫ sinh^2 t cosh t (cosh t dt) = ∫ sinh^2 t cosh^2 t dt = (1/4)∫ sinh^2 2t dt = (1/8) ∫ (cosh 4t−1) dt = (1/8) (((sinh 4t)/4) − t ) + c = (1/8) [( sinh t cosh t)(1+2sinh^2 t)−t ] +c = (1/8) [ (x(√(1+x^2 )) )(1+2x^2 )−sinh^(−1) x] + c](https://www.tinkutara.com/question/Q85814.png)
Commented by jagoll last updated on 25/Mar/20

Answered by MJS last updated on 25/Mar/20
![∫x^2 (√(1+x^2 ))dx= [x=sinh ln t =((t^2 −1)/(2t)) ⇔ t=x+(√(x^2 +1)) → dx=((t^2 +1)/(2t^2 ))] =(1/(16))∫t^3 dt−(1/8)∫(dt/t)+(1/(16))∫(dt/t^5 )= =(1/(64))t^4 −(1/8)ln t −(1/(64t^4 ))=((t^8 −1)/(64t^4 ))−(1/8)ln t = =(1/8)(x(2x^2 +1)(√(x^2 +1))−ln (x+(√(x^2 +1)))) +C](https://www.tinkutara.com/question/Q85847.png)
Commented by jagoll last updated on 25/Mar/20

Commented by MJS last updated on 25/Mar/20
