Menu Close

x-2-1-x-4-1-dx-




Question Number 86491 by john santu last updated on 29/Mar/20
∫  ((x^2 +1)/(x^4 +1)) dx ?
x2+1x4+1dx?
Commented by john santu last updated on 29/Mar/20
dear prof mr mjs. what the super  easy method ?
dearprofmrmjs.whatthesupereasymethod?
Answered by som(math1967) last updated on 29/Mar/20
∫(((x^2 +1)/x^2 )/((x^4 +1)/x^2 ))dx  ∫((1+(1/x^2 ))/(x^2 +(1/x^2 )))dx  ∫((d(x−(1/x)))/((x−(1/x))^2 +((√2))^2 ))  (1/( (√2)))tan^(−1) (((x−(1/x))/( (√2)))) +C
x2+1x2x4+1x2dx1+1x2x2+1x2dxd(x1x)(x1x)2+(2)212tan1(x1x2)+C
Commented by john santu last updated on 29/Mar/20
good answer
goodanswer
Commented by som(math1967) last updated on 29/Mar/20
Thank you sir
Thankyousir
Answered by MJS last updated on 29/Mar/20
other method:  ∫((x^2 +1)/(x^4 +1))dx=  =(1/2)∫(dx/(x^2 −(√2)x+1))+(1/2)∫(dx/(x^2 +(√2)x+1))=  =((√2)/2)(arctan ((√2)x−1) +arctan ((√2)x+1))+C
othermethod:x2+1x4+1dx==12dxx22x+1+12dxx2+2x+1==22(arctan(2x1)+arctan(2x+1))+C
Commented by john santu last updated on 29/Mar/20
ostrogradetski?
ostrogradetski?
Commented by MJS last updated on 29/Mar/20
no. just decomposing
no.justdecomposing

Leave a Reply

Your email address will not be published. Required fields are marked *