Question Number 87279 by Ar Brandon last updated on 03/Apr/20
$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$
Commented by abdomathmax last updated on 03/Apr/20
$${complex}\:{method}\:\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$$${x}^{\mathrm{4}} +\mathrm{1}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{4}} =−\mathrm{1}\:={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:\Rightarrow{x}_{{k}} ={e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{4}}} \\ $$$${and}\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right]\:{so}\:{the}\:{roots}\:\:{are} \\ $$$${x}_{\mathrm{0}} ={e}^{\frac{{i}\pi}{\mathrm{4}}} \:\:,{x}_{\mathrm{1}} ={e}^{\frac{{i}\mathrm{3}\pi}{\mathrm{4}}} \:,\:\:{x}_{\mathrm{2}} ={e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{4}}} \:\:\:,{x}_{\mathrm{3}} =\:{e}^{{i}\frac{\mathrm{7}\pi}{\mathrm{4}}} \:{and} \\ $$$${F}\left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{\mathrm{3}} \:\frac{{a}_{{k}} }{{x}−{x}_{{k}} } \\ $$$${a}_{{k}} =\frac{{x}_{{k}} ^{\mathrm{2}} }{\mathrm{4}{x}_{{k}} ^{\mathrm{3}} }\:=−\frac{\mathrm{1}}{\mathrm{4}}{x}_{{k}} ^{\mathrm{3}} \:\Rightarrow{F}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{4}}\sum_{{k}=\mathrm{0}} ^{\mathrm{3}} \frac{{x}_{{k}} ^{\mathrm{3}} }{{x}−{x}_{{k}} }\:\Rightarrow \\ $$$$\int\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:=−\frac{\mathrm{1}}{\mathrm{4}}\sum_{{k}=\mathrm{0}} ^{\mathrm{3}} {x}_{{k}} ^{\mathrm{3}} {ln}\left({x}−{x}_{{k}} \right)\:+\:{C} \\ $$
Commented by Ar Brandon last updated on 04/Apr/20
$${Please}\:\:{may}\:\:{I}\:\:{know}\:\:{how}\:\:{you}\:\:{switched}\:\:{from}\:\: \\ $$$${a}_{{k}} =\frac{{x}_{{k}} ^{\mathrm{2}} }{\mathrm{4}{x}_{{k}} ^{\mathrm{3}} }\:\:{to}\:\:{a}_{{k}} =−\frac{\mathrm{1}}{\mathrm{4}}{x}_{{k}} ^{\mathrm{3}} \:\:\:? \\ $$
Answered by TANMAY PANACEA. last updated on 03/Apr/20
$$\int\frac{{dx}}{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({x}−\frac{\mathrm{1}}{{x}}\right)}{\left({x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{ln}\left(\frac{{x}+\frac{\mathrm{1}}{{x}}−\sqrt{\mathrm{2}}}{{x}+\frac{\mathrm{1}}{{x}}+\sqrt{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{x}−\frac{\mathrm{1}}{{x}}}{\:\sqrt{\mathrm{2}}}\right)+{c} \\ $$
Commented by Ar Brandon last updated on 03/Apr/20
$${Right} \\ $$
Commented by TANMAY PANACEA. last updated on 03/Apr/20
$${thank}\:{hou}\:{sir} \\ $$
Commented by peter frank last updated on 03/Apr/20
$${thank}\:{you} \\ $$
Answered by redmiiuser last updated on 03/Apr/20
$${x}=\sqrt{{tanz}} \\ $$$${dx}=\frac{\mathrm{sec}\:^{\mathrm{2}} {z}.{dz}}{\mathrm{2}.\sqrt{\mathrm{tan}\:{z}}} \\ $$$$\int\frac{\mathrm{tan}\:{z}.\mathrm{sec}\:^{\mathrm{2}} {z}.{dz}}{\mathrm{2}.\sqrt{\mathrm{tan}\:{z}}.\mathrm{sec}\:^{\mathrm{2}} {z}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{\mathrm{tan}\:{z}}.{dz} \\ $$$$\mathrm{sec}\:{z}={u} \\ $$$${du}=\mathrm{sec}\:{z}.\mathrm{tan}\:{z}.{dz} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\sqrt{\mathrm{tan}\:{z}}}{\mathrm{sec}\:{z}.\mathrm{tan}\:{z}}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{du}}{{u}.\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\left(−\mathrm{1}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} .\left(\mathrm{1}−{u}^{\mathrm{2}} \right)^{\frac{−\mathrm{1}}{\mathrm{2}}} }{{u}}{du} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{n}!.{u}^{\mathrm{2}{n}} }{\mathrm{2}^{\mathrm{2}{n}} .\left({n}!\right)^{\mathrm{2}} .\left(\mathrm{2}{n}\right)} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{n}!.\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{{n}} }{\mathrm{2}^{\mathrm{2}{n}} .\left({n}!\right)^{\mathrm{2}} .\mathrm{2}{n}} \\ $$$$ \\ $$$$ \\ $$
Commented by redmiiuser last updated on 03/Apr/20
$${pls}\:{check}! \\ $$
Commented by redmiiuser last updated on 03/Apr/20
$${Mr}.{Ar}\:{Brandon}\:{I} \\ $$$${request}\:{you}\:{to}\:{check} \\ $$$${my}\:{solution}. \\ $$
Commented by MJS last updated on 03/Apr/20
$$\mathrm{Mr}.\:\mathrm{this}\:\mathrm{forum}\:\mathrm{had}\:\mathrm{been}\:\mathrm{a}\:\mathrm{polite}\:\mathrm{place}\:\mathrm{before} \\ $$$$\mathrm{you}\:\mathrm{arrived}.\:\mathrm{nobody}\:\mathrm{will}\:\mathrm{answer}\:\mathrm{you}\:\mathrm{if}\:\mathrm{you} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{change}\:\mathrm{your}\:\mathrm{behaviour}. \\ $$
Commented by mr W last updated on 03/Apr/20
$$\mathrm{100\%}\:{agree}! \\ $$
Commented by mr W last updated on 03/Apr/20
$${i}\:{would}\:{say}:\:{if}\:{you}\:{are}\:{sure}\:{that}\:{you} \\ $$$${can}\:{solve}\:{a}\:{question},\:{then}\:{solve}\:{it}! \\ $$$${people}\:{will}\:{see}\:{it}\:{and}\:{give}\:{comment} \\ $$$${when}\:{they}\:{can}\:{and}\:{when}\:{they}\:{like}. \\ $$$${to}\:{force}\:{other}\:{people}\:{to}\:{check}\:{it}\:{or} \\ $$$${to}\:{give}\:{comment}\:{is}\:{not}\:{polite},\:{not} \\ $$$${cool},\:{even}\:{boring}!\:{and}\:{if}\:{you}\:{can}\:{not}\: \\ $$$${solve}\:{a}\:{question}\:{or}\:{you}\:{are}\:{not}\:{sure} \\ $$$${with}\:{your}\:{solution},\:{you}\:{can}\:{also} \\ $$$${leave}\:{it}.\:{nobody}\:{will}\:{blame}\:{you}\:{if}\:{you} \\ $$$${don}'{t}\:{give}\:{answer}\:{to}\:{every}\:{question}. \\ $$
Commented by Ar Brandon last updated on 04/Apr/20
$${Don}'{t}\:\:{get}\:\:{it}. \\ $$
Commented by ajfour last updated on 04/Apr/20
$${i}\:{think}\:{these}\:{suggestions}\:{are} \\ $$$${meant}\:{for}\:{mr}\:{redmuiser}.. \\ $$
Commented by MJS last updated on 04/Apr/20
$$\mathrm{yes} \\ $$
Commented by redmiiuser last updated on 04/Apr/20
$${ok}\:{thanks}\:{everyone} \\ $$$${for}\:{such}\:{beautiful} \\ $$$${comments}.{I}\:{urged}\:{only} \\ $$$${to}\:{check}\:{and}\:{I}\:{didn}'{t}\: \\ $$$${forced}\:{to}\:{comment}. \\ $$
Commented by redmiiuser last updated on 04/Apr/20
$${And}\:{also}\:{one}\:{who} \\ $$$${gives}\:{question}\:{must} \\ $$$${check}\:{every}\:{answer}. \\ $$$${Its}\:{his}/{her}\:{duty}\:{I} \\ $$$${only}\:{asked}\:{to}\:{check} \\ $$$${my}\:{solution}\:{and}\:{in} \\ $$$${many}\:{questions}\:{people} \\ $$$${ask}\:{to}\:{check}\:{the}\:{answer} \\ $$$${and}\:{there}\:{is}\:{no}\:{point} \\ $$$${to}\:{insult}\:{anyone}. \\ $$$${Anyway}\:{thanks} \\ $$$${mr}.{MJS}\:,\:{mr}.{W}\:{to}\:{give} \\ $$$${such}\:{comments}. \\ $$$$ \\ $$
Commented by redmiiuser last updated on 04/Apr/20
$${If}\:{for}\:{me}\:{this}\:{forum} \\ $$$${is}\:{not}\:\:{getting}\:{a}\:{polite}\:{place} \\ $$$${then}\:{please}\:{excuse} \\ $$$${me}\:{its}\:{my}\:{tendency} \\ $$$${to}\:{get}\:{excited}.{I}\:{am}\: \\ $$$${sorry}\:{Honourable} \\ $$$${teachers}. \\ $$
Commented by Ar Brandon last updated on 04/Apr/20
$${I}\:\:{don}'{t}\:\:{get}\:\:{the}\:\:{method}. \\ $$
Commented by redmiiuser last updated on 04/Apr/20
$${why}\:{mister}\:{can}\:{you}\:{tell} \\ $$$${me}\:{the}\:{part}\:{where}\:{you} \\ $$$${faced}\:{problem} \\ $$
Commented by ajfour last updated on 05/Apr/20
Commented by redmiiuser last updated on 05/Apr/20
$${hahaha}…\:{nice}\:{sketch} \\ $$
Commented by ajfour last updated on 05/Apr/20
thankx, was meant 4 u.
Commented by Ar Brandon last updated on 05/Apr/20
$${No}\:{worries}.\:{I}'{ll}\:{review}\:{it}\:{some} \\ $$$${other}\:{time}.\: \\ $$$${I}\:{realised}\:{you}\:{love}\:{using}\:{the}\:{summation}\:{series} \\ $$$${while}\:{solving}\:{integrals}.\:{Haha} \\ $$
Answered by MJS last updated on 04/Apr/20
$$\int\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +\mathrm{1}}{dx}= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\int\frac{{x}}{{x}^{\mathrm{2}} −\sqrt{\mathrm{2}}{x}+\mathrm{1}}{dx}−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\int\frac{{x}}{{x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}+\mathrm{1}}{dx}= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\mathrm{ln}\:\left({x}^{\mathrm{2}} −\sqrt{\mathrm{2}}{x}+\mathrm{1}\right)\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{x}−\mathrm{1}\right)\:− \\ $$$$\:\:\:\:\:−\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}+\mathrm{1}\right)\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{x}+\mathrm{1}\right)\:= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\left(\mathrm{ln}\:\frac{{x}^{\mathrm{2}} −\sqrt{\mathrm{2}}{x}+\mathrm{1}}{{x}^{\mathrm{2}} −\sqrt{\mathrm{2}}{x}+\mathrm{1}}\:+\mathrm{2}\left(\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{x}−\mathrm{1}\right)\:+\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{x}+\mathrm{1}\right)\right)\right)\:+{C} \\ $$