Question Number 84497 by M±th+et£s last updated on 13/Mar/20
$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{5}} }\:{dx} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 13/Mar/20
$${z}^{\mathrm{5}} \:+\mathrm{1}\:=\mathrm{0}\:\Rightarrow{z}^{\mathrm{5}} =−\mathrm{1}\:{let}\:{z}={re}^{{i}\theta} \:\Rightarrow{r}^{\mathrm{5}} \:{e}^{{i}\mathrm{5}\theta} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi} \:\Rightarrow \\ $$$${r}=\mathrm{1}\:{and}\:\theta_{{k}} =\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{5}}\:\Rightarrow{z}_{{k}} ={e}^{{i}\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{5}}} \:\:\:{k}\in\left[\left[\mathrm{0},\mathrm{4}\right]\right] \\ $$$$\frac{{z}^{\mathrm{2}} }{{z}^{\mathrm{5}} \:+\mathrm{1}}\:=\frac{{z}^{\mathrm{2}} }{\prod_{{k}=\mathrm{0}} ^{\mathrm{4}} \left({z}−{z}_{{k}} \right)}\:=\sum_{{k}=\mathrm{0}} ^{\mathrm{4}} \:\frac{{a}_{{k}} }{{z}−{z}_{{k}} } \\ $$$${a}_{{k}} =\frac{{z}_{{k}} ^{\mathrm{2}} }{\mathrm{5}{z}_{\mathrm{4}} ^{\mathrm{4}} }\:=\frac{{z}_{{k}} ^{\mathrm{3}} }{−\mathrm{5}}\:=−\frac{\mathrm{1}}{\mathrm{5}}{z}_{{k}} ^{\mathrm{3}} \:\Rightarrow\int\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{5}} \:+\mathrm{1}}{dx}\:=−\frac{\mathrm{1}}{\mathrm{5}}\int\:\sum_{{k}=\mathrm{0}} ^{\mathrm{4}} \:\frac{{z}_{{k}} ^{\mathrm{3}} }{{x}−{z}_{{k}} }{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{5}}\sum_{{k}=\mathrm{0}} ^{\mathrm{4}} \:{z}_{{k}} ^{\mathrm{3}} \:\:{ln}\left({x}−{z}_{{k}} \right)\:+{C} \\ $$