Menu Close

x-2-2-x-2-3-x-2-4-x-2-5-x-2-6-x-2-7-dx-




Question Number 131058 by pipin last updated on 01/Feb/21
∫(((x^2 +2)(x^2 +3)(x^2 +4))/((x^2 +5)(x^2 +6)(x^2 +7))) dx
$$\int\frac{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{5}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{6}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{7}\right)}\:\mathrm{dx}\: \\ $$
Answered by MJS_new last updated on 01/Feb/21
=∫1−(3/(x^2 +5))+((24)/(x^2 +6))−((30)/(x^2 +7))dx=  =x−((3(√5))/5)arctan (((√5)x)/5) +4(√6)arctan (((√6)x)/6) −((30(√7))/7)arctan (((√7)x)/7) +C
$$=\int\mathrm{1}−\frac{\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{5}}+\frac{\mathrm{24}}{{x}^{\mathrm{2}} +\mathrm{6}}−\frac{\mathrm{30}}{{x}^{\mathrm{2}} +\mathrm{7}}{dx}= \\ $$$$={x}−\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{5}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{5}}{x}}{\mathrm{5}}\:+\mathrm{4}\sqrt{\mathrm{6}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{6}}{x}}{\mathrm{6}}\:−\frac{\mathrm{30}\sqrt{\mathrm{7}}}{\mathrm{7}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{7}}{x}}{\mathrm{7}}\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *