Menu Close

x-2-2-x-x-




Question Number 80733 by key of knowledge last updated on 05/Feb/20
x^2 =2^x ⇒x=?
$$\mathrm{x}^{\mathrm{2}} =\mathrm{2}^{\mathrm{x}} \Rightarrow\mathrm{x}=? \\ $$
Commented by mr W last updated on 05/Feb/20
x^2 =2^x   x=±2^(x/2) =±e^((x ln 2)/2)   xe^(−((x ln 2)/2)) =±1  (−((xln 2)/2))e^((−((x ln 2)/2))) =±((ln 2)/2)  (−((xln 2)/2))=W(±((ln 2)/2))  x=−(2/(ln 2)) W(±((ln 2)/2))= { ((−(2/(ln ))W(((ln 2)/2))=−0.766665)),((−(2/(ln 2))W(−((ln 2)/2))= { ((−((2×(−0.693147))/(ln 2))=2)),((−((2×(−1.386294))/(ln 2))=4)) :})) :}
$${x}^{\mathrm{2}} =\mathrm{2}^{{x}} \\ $$$${x}=\pm\mathrm{2}^{\frac{{x}}{\mathrm{2}}} =\pm{e}^{\frac{{x}\:\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} \\ $$$${xe}^{−\frac{{x}\:\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}} =\pm\mathrm{1} \\ $$$$\left(−\frac{{x}\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right){e}^{\left(−\frac{{x}\:\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right)} =\pm\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}} \\ $$$$\left(−\frac{{x}\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right)=\mathbb{W}\left(\pm\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right) \\ $$$${x}=−\frac{\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}\:\mathbb{W}\left(\pm\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right)=\begin{cases}{−\frac{\mathrm{2}}{\mathrm{ln}\:}\mathbb{W}\left(\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right)=−\mathrm{0}.\mathrm{766665}}\\{−\frac{\mathrm{2}}{\mathrm{ln}\:\mathrm{2}}\mathbb{W}\left(−\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}\right)=\begin{cases}{−\frac{\mathrm{2}×\left(−\mathrm{0}.\mathrm{693147}\right)}{\mathrm{ln}\:\mathrm{2}}=\mathrm{2}}\\{−\frac{\mathrm{2}×\left(−\mathrm{1}.\mathrm{386294}\right)}{\mathrm{ln}\:\mathrm{2}}=\mathrm{4}}\end{cases}}\end{cases} \\ $$
Commented by key of knowledge last updated on 06/Feb/20
mr w^� ,what meaning of W(∓((ln2)/2))
$$\mathrm{mr}\:\bar {\mathrm{w}},\mathrm{what}\:\mathrm{meaning}\:\mathrm{of}\:\mathrm{W}\left(\mp\frac{\mathrm{ln2}}{\mathrm{2}}\right) \\ $$
Commented by mr W last updated on 06/Feb/20
that′s Lambert W function, the  inverse function from y=xe^x .
$${that}'{s}\:{Lambert}\:{W}\:{function},\:{the} \\ $$$${inverse}\:{function}\:{from}\:{y}={xe}^{{x}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *