Menu Close

x-2-2-y-xy-0-




Question Number 79761 by Najaah last updated on 28/Jan/20
(x^2 +2)y′′ + xy = 0
$$\left({x}^{\mathrm{2}} +\mathrm{2}\right){y}''\:+\:{xy}\:=\:\mathrm{0} \\ $$
Commented by abdomathmax last updated on 28/Jan/20
solution developpable at?integr serie  y(x)=Σ_(n=0) ^∞  a_n x^n  ⇒y^′ =Σ_(n=1) ^∞ na_n x^(n−1)  ⇒  y^((2)) (x)=Σ_(n=2) ^∞ n(n−1)a_n x^(n−2)   (e) ⇒(x^2 +2)Σ_(n=2) ^∞ n(n−1)a_n x^(n−2) +Σ_(n=0) ^∞ a_n x^(n+1) =0  ⇒Σ_(n=2) ^∞ n(n−1)a_n x^n  +2Σ_(n=2) ^∞ n(n−1)a_n  x^(n−2)   +Σ_(n=1) ^∞ a_(n−1) x^n  =0 ⇒  a_0  +Σ_(n=2) ^∞ {n(n−1)a_n +a_(n−1) }x^n          +2a_2   +2Σ_(n=1) ^∞  (n+2)(n+1)a_(n+2)  x^n =0  ⇒a_0  +2a_2   +Σ_(n=2) ^∞ {n(n−1)a_n +a_(n−1) +(n+2)(n+1)a_(n+2) }x^n =0  ⇒a_0  +2a_2 =0 and  (n+2)(n+1)a_(n+2) +n(n−1)a_n  +a_(n−1) =0 ∀n≥2  ...be continued...
$${solution}\:{developpable}\:{at}?{integr}\:{serie} \\ $$$${y}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{a}_{{n}} {x}^{{n}} \:\Rightarrow{y}^{'} =\sum_{{n}=\mathrm{1}} ^{\infty} {na}_{{n}} {x}^{{n}−\mathrm{1}} \:\Rightarrow \\ $$$${y}^{\left(\mathrm{2}\right)} \left({x}\right)=\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} \\ $$$$\left({e}\right)\:\Rightarrow\left({x}^{\mathrm{2}} +\mathrm{2}\right)\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}−\mathrm{2}} +\sum_{{n}=\mathrm{0}} ^{\infty} {a}_{{n}} {x}^{{n}+\mathrm{1}} =\mathrm{0} \\ $$$$\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} {x}^{{n}} \:+\mathrm{2}\sum_{{n}=\mathrm{2}} ^{\infty} {n}\left({n}−\mathrm{1}\right){a}_{{n}} \:{x}^{{n}−\mathrm{2}} \\ $$$$+\sum_{{n}=\mathrm{1}} ^{\infty} {a}_{{n}−\mathrm{1}} {x}^{{n}} \:=\mathrm{0}\:\Rightarrow \\ $$$${a}_{\mathrm{0}} \:+\sum_{{n}=\mathrm{2}} ^{\infty} \left\{{n}\left({n}−\mathrm{1}\right){a}_{{n}} +{a}_{{n}−\mathrm{1}} \right\}{x}^{{n}} \:\:\:\:\:\:\:\:\:+\mathrm{2}{a}_{\mathrm{2}} \\ $$$$+\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} \:\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{2}} \:{x}^{{n}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{0}} \:+\mathrm{2}{a}_{\mathrm{2}} \:\:+\sum_{{n}=\mathrm{2}} ^{\infty} \left\{{n}\left({n}−\mathrm{1}\right){a}_{{n}} +{a}_{{n}−\mathrm{1}} +\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{2}} \right\}{x}^{{n}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{0}} \:+\mathrm{2}{a}_{\mathrm{2}} =\mathrm{0}\:{and} \\ $$$$\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){a}_{{n}+\mathrm{2}} +{n}\left({n}−\mathrm{1}\right){a}_{{n}} \:+{a}_{{n}−\mathrm{1}} =\mathrm{0}\:\forall{n}\geqslant\mathrm{2} \\ $$$$…{be}\:{continued}… \\ $$
Answered by Henri Boucatchou last updated on 28/Jan/20
we  have  ((y′′)/y)=−(x/(x^2 +2))  ⇒ lny′=−(1/2)ln(x^2 +2)  ⇒  y′=(x^2 +2)^(−1/2)   ⇒y=∫(x^2 +2)^(−1/2) dx=ln(x+(√(x^2 +2)))+Cte
$${we}\:\:{have}\:\:\frac{{y}''}{{y}}=−\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{2}}\:\:\Rightarrow\:{lny}'=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +\mathrm{2}\right) \\ $$$$\Rightarrow\:\:{y}'=\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{−\mathrm{1}/\mathrm{2}} \\ $$$$\Rightarrow{y}=\int\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{−\mathrm{1}/\mathrm{2}} {dx}={ln}\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right)+{Cte} \\ $$
Commented by mr W last updated on 28/Jan/20
sir:  ((d(ln y′))/dx)=((y′′)/(y′))≠((y′′)/y)  ((y′′)/y)=−(x/(x^2 +2))  ⇏ lny′=−(1/2)ln(x^2 +2)+C
$${sir}: \\ $$$$\frac{{d}\left(\mathrm{ln}\:{y}'\right)}{{dx}}=\frac{{y}''}{{y}'}\neq\frac{{y}''}{{y}} \\ $$$$\frac{{y}''}{{y}}=−\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{2}}\:\:\nRightarrow\:{lny}'=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +\mathrm{2}\right)+{C} \\ $$
Commented by abdomathmax last updated on 28/Jan/20
not correct
$${not}\:{correct} \\ $$
Commented by jagoll last updated on 28/Jan/20
how to get it?
$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{it}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *