Menu Close

x-2-2x-8-6-2x-12-x-




Question Number 121590 by pooooop last updated on 09/Nov/20
x^2 +2x=8(√6)  2x−((12)/x)=?
$$\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{x}}=\mathrm{8}\sqrt{\mathrm{6}} \\ $$$$\mathrm{2}\boldsymbol{{x}}−\frac{\mathrm{12}}{\boldsymbol{{x}}}=? \\ $$
Answered by mathmax by abdo last updated on 09/Nov/20
x^2 +2x=8(√6)⇒x^2  +2x−8(√6)=0  Δ^′  =1+8(√6) ⇒x_1 =−1+(√(1+8(√6)))  and x_2 =−1−(√(1+8(√6)))⇒  2x−((12)/x) =2(−1+^− (√(1+8(√6))))−((12)/(−1+^+ (√(1+8(√6)))))
$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}=\mathrm{8}\sqrt{\mathrm{6}}\Rightarrow\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}−\mathrm{8}\sqrt{\mathrm{6}}=\mathrm{0} \\ $$$$\Delta^{'} \:=\mathrm{1}+\mathrm{8}\sqrt{\mathrm{6}}\:\Rightarrow\mathrm{x}_{\mathrm{1}} =−\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{8}\sqrt{\mathrm{6}}}\:\:\mathrm{and}\:\mathrm{x}_{\mathrm{2}} =−\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{8}\sqrt{\mathrm{6}}}\Rightarrow \\ $$$$\mathrm{2x}−\frac{\mathrm{12}}{\mathrm{x}}\:=\mathrm{2}\left(−\mathrm{1}\overset{−} {+}\sqrt{\mathrm{1}+\mathrm{8}\sqrt{\mathrm{6}}}\right)−\frac{\mathrm{12}}{−\mathrm{1}\overset{+} {+}\sqrt{\mathrm{1}+\mathrm{8}\sqrt{\mathrm{6}}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *