Question Number 184728 by mnjuly1970 last updated on 11/Jan/23

Answered by cortano1 last updated on 11/Jan/23

Commented by mnjuly1970 last updated on 11/Jan/23

Answered by MJS_new last updated on 11/Jan/23
![x^2 −3x+1=0 I′ll only use these 3 informations: (1) α+β=3 (2) αβ=1 [⇒ β=(1/α)] α^3 +(1/β)=α^3 +α=(α^2 /β)+α=((α(α+β))/β)=((3α)/β)=3α^2 same for β^3 +(1/α)=3β^2 now we have 27(α^6 +β^6 ) α^2 +β^2 =(α+β)^2 −2αβ=7 α^4 +β^4 =(α+β)^4 −2αβ(2(α^2 +β^2 )+3αβ)=47 α^6 +β^6 =(α+β)^6 −αβ(6(α^4 +β^4 )+15αβ(α^2 +β^2 )+20(αβ)^2 )=322 ⇒ 27(α^6 +β^6 )=8694](https://www.tinkutara.com/question/Q184733.png)
Answered by Rasheed.Sindhi last updated on 11/Jan/23

Answered by Rasheed.Sindhi last updated on 11/Jan/23

Answered by behi834171 last updated on 15/Jan/23
![x^2 =3x−1⇒x^3 =3x^2 −x=3(3x−1)−x= =8x−3 x=3−(1/x)⇒(1/x)=3−x ⇒ { ((α^3 +β^3 =8(α+β)−6=24−6=18)),((α^2 +β^2 =3(α+β)−2=9−2=7)) :} ⇒(α^3 +(1/β))^3 =(8α−3+3−β)^3 =(8α−β)^3 = =[9α−(α+β)]^3 =[9α−3]^3 =3^3 [27α^3 −27α^2 +9α−1]= =27[27(8α−3)−27(3α−1)+9α−1]= =27[144α−55] ⇒Σ(𝛂^3 +(1/𝛃))^3 =27[144(α+β)−110]= =27[144×3−110]=27×322=8694 ■](https://www.tinkutara.com/question/Q185006.png)