x-2-4-1-2-dx-trig-substitution-only- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62251 by hovea cw last updated on 18/Jun/19 ∫(x2−4)1/2dxtrigsubstitutiononly Commented by maxmathsup by imad last updated on 18/Jun/19 letI=∫x2−4dxweusethechangementx=2ch(t)⇒I=∫4ch2t−4(2sh(t)dt=4∫ch2t−1sh(t)dt=4∫sh2tdt=4∫ch(2t)−12dt=2∫ch(2t)dt−2t=sh(2t)−2t=2sh(t)ch(t)−2t=xch2t−1−2t=xx24−1−2t=x2x2−4−2argch(x2)=x2x2−4−2ln(x2+x24−1)=x2x2−4−2ln(x+x2−42)+c0=x2x2−4−2ln(x+x2−4)+4ln(2)+c0⇒∫x2−4dx=x2x2−4−2ln(x+x2−4)+C. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-127785Next Next post: ln-x-1-x-2-x-1-limit-0-gt-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.