Question Number 62251 by hovea cw last updated on 18/Jun/19
$$\int\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{1}/\mathrm{2}} \mathrm{dx} \\ $$$$\mathrm{trig}\:\mathrm{substitution}\:\mathrm{only} \\ $$
Commented by maxmathsup by imad last updated on 18/Jun/19
$${let}\:{I}\:=\int\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}{dx}\:\:\:{we}\:{use}\:{the}\:{changement}\:{x}\:=\mathrm{2}{ch}\left({t}\right)\:\Rightarrow \\ $$$${I}\:=\int\sqrt{\mathrm{4}{ch}^{\mathrm{2}} {t}−\mathrm{4}\left(\right.}\mathrm{2}{sh}\left({t}\right){dt}\:=\mathrm{4}\:\int\:\:\sqrt{{ch}^{\mathrm{2}} {t}−\mathrm{1}}{sh}\left({t}\right){dt}\:=\mathrm{4}\:\int\:{sh}^{\mathrm{2}} {tdt} \\ $$$$=\mathrm{4}\:\int\:\frac{{ch}\left(\mathrm{2}{t}\right)−\mathrm{1}}{\mathrm{2}}{dt}\:=\mathrm{2}\:\int\:{ch}\left(\mathrm{2}{t}\right){dt}−\mathrm{2}{t}\:\:=\:{sh}\left(\mathrm{2}{t}\right)−\mathrm{2}{t} \\ $$$$=\mathrm{2}{sh}\left({t}\right){ch}\left({t}\right)−\mathrm{2}{t}\:={x}\sqrt{{ch}^{\mathrm{2}} {t}−\mathrm{1}}−\mathrm{2}{t}\:={x}\sqrt{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}}−\mathrm{2}{t}\:=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}−\mathrm{2}{argch}\left(\frac{{x}}{\mathrm{2}}\right) \\ $$$$=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\:−\mathrm{2}\:{ln}\left(\frac{{x}}{\mathrm{2}}\:+\sqrt{\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{1}}\right)\:=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\:−\mathrm{2}{ln}\left(\frac{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\right)+{c}_{\mathrm{0}} \\ $$$$=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\:\:−\mathrm{2}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\right)\:+\mathrm{4}{ln}\left(\mathrm{2}\right)\:+{c}_{\mathrm{0}} \:\Rightarrow \\ $$$$\int\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}{dx}\:=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\:−\mathrm{2}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}\right)\:+{C}\:. \\ $$