Menu Close

x-2-4-1-2-dx-trig-substitution-only-




Question Number 62251 by hovea cw last updated on 18/Jun/19
∫(x^2 −4)^(1/2) dx  trig substitution only
(x24)1/2dxtrigsubstitutiononly
Commented by maxmathsup by imad last updated on 18/Jun/19
let I =∫ (√(x^2 −4))dx   we use the changement x =2ch(t) ⇒  I =∫(√(4ch^2 t−4())2sh(t)dt =4 ∫  (√(ch^2 t−1))sh(t)dt =4 ∫ sh^2 tdt  =4 ∫ ((ch(2t)−1)/2)dt =2 ∫ ch(2t)dt−2t  = sh(2t)−2t  =2sh(t)ch(t)−2t =x(√(ch^2 t−1))−2t =x(√((x^2 /4)−1))−2t =(x/2)(√(x^2 −4))−2argch((x/2))  =(x/2)(√(x^2 −4)) −2 ln((x/2) +(√((x^2 /4)−1))) =(x/2)(√(x^2 −4)) −2ln(((x+(√(x^2 −4)))/2))+c_0   =(x/2)(√(x^2 −4))  −2ln(x+(√(x^2 −4))) +4ln(2) +c_0  ⇒  ∫ (√(x^2 −4))dx =(x/2)(√(x^2 −4)) −2ln(x+(√(x^2 −4))) +C .
letI=x24dxweusethechangementx=2ch(t)I=4ch2t4(2sh(t)dt=4ch2t1sh(t)dt=4sh2tdt=4ch(2t)12dt=2ch(2t)dt2t=sh(2t)2t=2sh(t)ch(t)2t=xch2t12t=xx2412t=x2x242argch(x2)=x2x242ln(x2+x241)=x2x242ln(x+x242)+c0=x2x242ln(x+x24)+4ln(2)+c0x24dx=x2x242ln(x+x24)+C.

Leave a Reply

Your email address will not be published. Required fields are marked *