Menu Close

x-2-4x-1-0-x-3-1-x-3-




Question Number 151344 by mathdanisur last updated on 20/Aug/21
x^2  - 4x + 1 = 0  ⇒  x^3  + (1/x^3 ) = ?
$$\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{4x}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\:\Rightarrow\:\:\mathrm{x}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:=\:? \\ $$
Answered by dumitrel last updated on 20/Aug/21
x−4+(1/x)=0⇒x+(1/x)=4⇒  64=x^3 +3x∙(1/x)(x+(1/x))+(1/x^3 )⇒  64=x^3 +12+(1/x^3 )⇒x^3 +(1/x^3 )=52
$${x}−\mathrm{4}+\frac{\mathrm{1}}{{x}}=\mathrm{0}\Rightarrow{x}+\frac{\mathrm{1}}{{x}}=\mathrm{4}\Rightarrow \\ $$$$\mathrm{64}={x}^{\mathrm{3}} +\mathrm{3}{x}\centerdot\frac{\mathrm{1}}{{x}}\left({x}+\frac{\mathrm{1}}{{x}}\right)+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\Rightarrow \\ $$$$\mathrm{64}={x}^{\mathrm{3}} +\mathrm{12}+\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\Rightarrow{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{52} \\ $$$$ \\ $$
Commented by mathdanisur last updated on 20/Aug/21
Thank you Ser cool
$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er}\:\mathrm{cool} \\ $$
Answered by Rasheed.Sindhi last updated on 20/Aug/21
x^2 +1=4x  (x^2 +1=4x)^3   x^6 +1+3x^2 (x^2 +1)=64x^3   x^6 +1+3x^2 (4x)=64x^3   x^6 −52x^3 +1=0  Dividing by x^3  to both sides:  (x≠0)  x^3 −52+(1/x^3 )=0  x^3 +(1/x^3 )=52
$$\mathrm{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{4x} \\ $$$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{4x}\right)^{\mathrm{3}} \\ $$$$\mathrm{x}^{\mathrm{6}} +\mathrm{1}+\mathrm{3x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{64x}^{\mathrm{3}} \\ $$$$\mathrm{x}^{\mathrm{6}} +\mathrm{1}+\mathrm{3x}^{\mathrm{2}} \left(\mathrm{4x}\right)=\mathrm{64x}^{\mathrm{3}} \\ $$$$\mathrm{x}^{\mathrm{6}} −\mathrm{52x}^{\mathrm{3}} +\mathrm{1}=\mathrm{0} \\ $$$${Dividing}\:{by}\:{x}^{\mathrm{3}} \:{to}\:{both}\:{sides}:\:\:\left({x}\neq\mathrm{0}\right) \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{52}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=\mathrm{52} \\ $$
Commented by mathdanisur last updated on 20/Aug/21
Thank you Ser
$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *