Menu Close

x-2-4x-3-x-2-6x-4-1-




Question Number 130337 by EDWIN88 last updated on 24/Jan/21
 (x^2 −4x+3)^(x^2 −6x+4)  ≤ 1
(x24x+3)x26x+41
Answered by mathmax by abdo last updated on 24/Jan/21
e⇒e^((x^2 −6x+4)ln(x^2 −4x+3)) ≤1  x^2 −4x+3=0→Δ^′ =4−3=1 ⇒x_1 =((2+1)/1)=3 and x_2 =((2−1)/1)=1  the equation is dfined on]−∞,1[∪]3,+∞[  e ⇒(x^2 −6x+4)ln(x^2 −4x+3)≤0  x^2 −6x+4=0→Δ^′ =9−4=5 ⇒x_1 =3+(√5) and x_2 =3−(√5)  ln(x^2 −4x+3)>0 ⇒x^2 −4x+3>1 ⇒x^2 −4x+2>0 ⇒  x^2 −4x+4−2>0 ⇒(x−2)^2 −2>0 ⇒(x−2−(√2))(x−2+(√2))>0 ⇒  x∈]−∞,2−(√2)[∪]2+(√2),+∞[  ln(x^2 −4x+3)<0 ⇒x^2 −4x+3<1 ⇒x^2 −4x+2<0 ⇒  ]2−(√2),2+(√2)[ the problem lead to find sgn of (x^2 −6x+4)ln(x^2 −4x+3)  ...be continued...
ee(x26x+4)ln(x24x+3)1x24x+3=0Δ=43=1x1=2+11=3andx2=211=1theequationisdfinedon],1[]3,+[e(x26x+4)ln(x24x+3)0x26x+4=0Δ=94=5x1=3+5andx2=35ln(x24x+3)>0x24x+3>1x24x+2>0x24x+42>0(x2)22>0(x22)(x2+2)>0x],22[]2+2,+[ln(x24x+3)<0x24x+3<1x24x+2<0]22,2+2[theproblemleadtofindsgnof(x26x+4)ln(x24x+3)becontinued
Answered by MJS_new last updated on 24/Jan/21
p∈R∧q∈R∧r∈Z  p^q =1  (1) p=1  (2) q=0∧p≠0  (3) p=−1∧q=2r  (1) x^2 −4x+3=1 ⇒ x=2±(√2)  (2) x^2 −6x+4=0 ⇒ x=3±(√5)          x^2 −4x+3≠0 in both cases  (3) x^2 −4x+3=−1 ⇒ x=2          x^2 −6x+4=−4 in this case    both p and q are parabolas ⇒  solution for p^q ≤1 is  2−(√2)≤x≤3−(√5) ∨ x=2 ∨ 2+(√2)≤x≤3+(√5)
pRqRrZpq=1(1)p=1(2)q=0p0(3)p=1q=2r(1)x24x+3=1x=2±2(2)x26x+4=0x=3±5x24x+30inbothcases(3)x24x+3=1x=2x26x+4=4inthiscasebothpandqareparabolassolutionforpq1is22x35x=22+2x3+5

Leave a Reply

Your email address will not be published. Required fields are marked *