Menu Close

x-2-a-bx-2-5-dx-where-a-b-gt-0-




Question Number 128334 by liberty last updated on 06/Jan/21
Ω = ∫ (x^2 /( (√((a+bx^2 )^5 )))) dx ; where : a; b >0
Ω=x2(a+bx2)5dx;where:a;b>0
Answered by bramlexs22 last updated on 06/Jan/21
Ω = ∫ (x^2 /((a+bx^2 )^(5/2) )) dx   Ω=∫ (x^2 /((x^2 (ax^(−2) +b))^(5/2) )) dx  Ω=∫ (x^(−3) /((ax^(−2) +b)^(5/2) )) dx  setting ax^(−2) +b = v   we get −2ax^(−3)  dx = dv   then Ω = −(1/(2a))∫ (dv/v^(5/2) )  Ω=−(1/(2a))∫ v^(−5/2)  dv = −(1/(2a)).(−(2/3))v^(−3/2) +C  Ω=(1/(3a)). (1/( (√v^3 ))) +C = (1/(3a (√((((a+bx^2 )/x^2 ))^3 )))) + C  Ω = (x^3 /(3a (√((a+bx^2 )^3 )))) + C
Ω=x2(a+bx2)5/2dxΩ=x2(x2(ax2+b))5/2dxΩ=x3(ax2+b)5/2dxsettingax2+b=vweget2ax3dx=dvthenΩ=12advv5/2Ω=12av5/2dv=12a.(23)v3/2+CΩ=13a.1v3+C=13a(a+bx2x2)3+CΩ=x33a(a+bx2)3+C

Leave a Reply

Your email address will not be published. Required fields are marked *