Menu Close

x-2-ax-2-b-0-has-2-roots-c-and-d-also-x-2-cx-2-d-0-has-2-roots-a-and-b-such-that-a-b-c-d-are-defferent-non-zero-numbers-find-possible-value-s-for-a-2-b-2-c-2-d-2-




Question Number 55195 by behi83417@gmail.com last updated on 19/Feb/19
x^2 +ax+(√2)b=0,has 2 roots:c and d,also  x^2 +cx+(√2)d=0,has 2 roots:a and b.such  that:a, b, c, d,are defferent non zero   numbers.  find possible value(s) for:a^2 +b^2 +c^2 +d^2 .
$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{ax}}+\sqrt{\mathrm{2}}\boldsymbol{\mathrm{b}}=\mathrm{0},\boldsymbol{\mathrm{has}}\:\mathrm{2}\:\boldsymbol{\mathrm{roots}}:\boldsymbol{\mathrm{c}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{d}},\boldsymbol{\mathrm{also}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{cx}}+\sqrt{\mathrm{2}}\boldsymbol{\mathrm{d}}=\mathrm{0},\boldsymbol{\mathrm{has}}\:\mathrm{2}\:\boldsymbol{\mathrm{roots}}:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{b}}.\boldsymbol{\mathrm{such}} \\ $$$$\boldsymbol{\mathrm{that}}:\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}},\:\boldsymbol{\mathrm{c}},\:\boldsymbol{\mathrm{d}},\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{defferent}}\:\boldsymbol{\mathrm{non}}\:\boldsymbol{\mathrm{zero}}\: \\ $$$$\boldsymbol{\mathrm{numbers}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{value}}\left(\boldsymbol{\mathrm{s}}\right)\:\boldsymbol{\mathrm{for}}:\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} +\boldsymbol{\mathrm{d}}^{\mathrm{2}} . \\ $$
Answered by behi83417@gmail.com last updated on 19/Feb/19
c+d=−a,cd=(√2)b  a+b=−c,ab=(√2)d  abcd=2bd⇒ac=2⇒c=(2/a)  a+b=−c⇒b=−(2/a)−a=−((2+a^2 )/a)  ab=(√2)d⇒d=((a.((−(2+a^2 ))/a))/( (√2)))=−((2+a^2 )/( (√2)))  c+d=−a⇒(2/a)−((2+a^2 )/( (√2)))=−a  2(√2)−a(2+a^2 )=−a^2 (√2)  ⇒a^3 −(√2)a^2 +2a−2(√2)=0  ⇒(a^2 +2)(a−(√2))=0⇒a=(√2),a=±i(√2)  d=−((2+a^2 )/( (√2)))=−((2+((√(2 ))or ±i(√2))^2 )/( (√2)))=−2(√2),0  b=−((2+a^2 )/a)=−2(√2),0,c=(2/a)=(√2),∓i(√2)  ⇒a^2 +b^2 +c^2 +d^2 =20  ∨ −4 .
$${c}+{d}=−{a},{cd}=\sqrt{\mathrm{2}}{b} \\ $$$${a}+{b}=−{c},{ab}=\sqrt{\mathrm{2}}{d} \\ $$$${abcd}=\mathrm{2}{bd}\Rightarrow{ac}=\mathrm{2}\Rightarrow{c}=\frac{\mathrm{2}}{{a}} \\ $$$${a}+{b}=−{c}\Rightarrow{b}=−\frac{\mathrm{2}}{{a}}−{a}=−\frac{\mathrm{2}+{a}^{\mathrm{2}} }{{a}} \\ $$$${ab}=\sqrt{\mathrm{2}}{d}\Rightarrow{d}=\frac{{a}.\frac{−\left(\mathrm{2}+{a}^{\mathrm{2}} \right)}{{a}}}{\:\sqrt{\mathrm{2}}}=−\frac{\mathrm{2}+{a}^{\mathrm{2}} }{\:\sqrt{\mathrm{2}}} \\ $$$${c}+{d}=−{a}\Rightarrow\frac{\mathrm{2}}{{a}}−\frac{\mathrm{2}+{a}^{\mathrm{2}} }{\:\sqrt{\mathrm{2}}}=−{a} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}}−{a}\left(\mathrm{2}+{a}^{\mathrm{2}} \right)=−{a}^{\mathrm{2}} \sqrt{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{3}} −\sqrt{\mathrm{2}}{a}^{\mathrm{2}} +\mathrm{2}{a}−\mathrm{2}\sqrt{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} +\mathrm{2}\right)\left({a}−\sqrt{\mathrm{2}}\right)=\mathrm{0}\Rightarrow{a}=\sqrt{\mathrm{2}},{a}=\pm{i}\sqrt{\mathrm{2}} \\ $$$${d}=−\frac{\mathrm{2}+{a}^{\mathrm{2}} }{\:\sqrt{\mathrm{2}}}=−\frac{\mathrm{2}+\left(\sqrt{\mathrm{2}\:}{or}\:\pm{i}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }{\:\sqrt{\mathrm{2}}}=−\mathrm{2}\sqrt{\mathrm{2}},\mathrm{0} \\ $$$${b}=−\frac{\mathrm{2}+{a}^{\mathrm{2}} }{{a}}=−\mathrm{2}\sqrt{\mathrm{2}},\mathrm{0},{c}=\frac{\mathrm{2}}{{a}}=\sqrt{\mathrm{2}},\mp{i}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{20}\:\:\vee\:−\mathrm{4}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *