Menu Close

x-2-e-x-2-2-Mastermind-




Question Number 169049 by Mastermind last updated on 23/Apr/22
∫x^2 e^(x^2 /2)     Mastermind
$$\int{x}^{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by Mathspace last updated on 23/Apr/22
∫ x^2  e^(x^2 /2) dx=∫(x)(xe^(x^2 /2) )dx  =xe^(x^2 /2) −∫ e^(x^2 /2) dx  =xe^(x^2 /2) −∫ Σ_(n=0) ^∞  ((((x^2 /2))^n )/(n!))  = xe^(x^2 /2) −Σ_(n=0) ^∞ (1/(2^n n!))∫ x^(2n) dx  =xe^(x^2 /2)  −Σ_(n=0) ^∞  (x^(2n+1) /(n! 2^n (2n+1))) +C
$$\int\:{x}^{\mathrm{2}} \:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx}=\int\left({x}\right)\left({xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \right){dx} \\ $$$$={xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} −\int\:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx} \\ $$$$={xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} −\int\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)^{{n}} }{{n}!} \\ $$$$=\:{xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} −\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}^{{n}} {n}!}\int\:{x}^{\mathrm{2}{n}} {dx} \\ $$$$={xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{{n}!\:\mathrm{2}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)}\:+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *