Menu Close

x-2-x-1-x-5-8-x-1-




Question Number 176458 by mathlove last updated on 19/Sep/22
x^2 +x=1  ((x^5 +8)/(x+1))=?
x2+x=1x5+8x+1=?
Answered by Rasheed.Sindhi last updated on 19/Sep/22
x^2 +x=1;   ((x^5 +8)/(x+1))=?  x^2 =1−x⇒x^3 =x−x^2 =x−(1−x)=2x−1  ⇒x^5 =2x^3 −x^2 =2(2x−1)−(1−x)  ⇒x^5 =5x−3    ((x^5 +8)/(x+1))=((5x−3+8)/(x+1))=((5x+5)/(x+1))=5(((x+1)/(x+1)))=5
x2+x=1;x5+8x+1=?x2=1xx3=xx2=x(1x)=2x1x5=2x3x2=2(2x1)(1x)x5=5x3x5+8x+1=5x3+8x+1=5x+5x+1=5(x+1x+1)=5
Commented by mathlove last updated on 20/Sep/22
thanks
thanks
Answered by Rasheed.Sindhi last updated on 20/Sep/22
       AnOther way..._((Replacing 1′s ))    determinant (((x^2 +x=1;   ((x^5 +8)/(x+1))=?)))  ((x^5 +8)/(x+1))=((x^5 +8(x^2 +x))/(x+x^2 +x))=((x^5 +8x^2 +8x)/(x^2 +2x))  =((x^4 +8x+8)/(x+2))=((x^4 +8x+8(x^2 +x))/(x+2(x^2 +x))) =((x^4 +8x^2 +16x)/(2x^2 +3x))  =((x^3 +8x+16)/(2x+3))=((x^3 +8x+16(x^2 +x))/(2x+3(x^2 +x)))=((x^3 +16x^2 +24x)/(3x^2 +5x))  =((x^2 +16x+24)/(3x+5))=((x^2 +16x+24(x^2 +x))/(3x+5(x^2 +x)))  =((25x^2 +40x)/(5x^2 +8x))=((25x+40)/(5x+8))=((5(5x+8))/((5x+8)))  =5
\boldsymbolAnOther\boldsymbolway(Replacing1\boldsymbols)x2+x=1;x5+8x+1=?x5+8x+1=x5+8(x2+x)x+x2+x=x5+8x2+8xx2+2x=x4+8x+8x+2=x4+8x+8(x2+x)x+2(x2+x)=x4+8x2+16x2x2+3x=x3+8x+162x+3=x3+8x+16(x2+x)2x+3(x2+x)=x3+16x2+24x3x2+5x=x2+16x+243x+5=x2+16x+24(x2+x)3x+5(x2+x)=25x2+40x5x2+8x=25x+405x+8=5\cancel(5x+8)\cancel(5x+8)=5
Answered by Rasheed.Sindhi last updated on 20/Sep/22
      AnOther way..._((Replacing x^(2 ) ′s))   x^2 +x=1;   ((x^5 +8)/(x+1))=?  x^2 =1−x  ((x^5 +8)/(x+1))=((x(x^2 )^2 +8)/(x+1))=((x(1−x)^2 +8)/(x+1))  =((x−2x^2 +x^3 +8)/(x+1))=((x−x^2 (2−x)+8)/(x+1))  =((x−(1−x)(2−x)+8)/(x+1))  =((x−2+x+2x−x^2 +8)/(x+1))=((−x^2 +4x+6)/(x+1))  =((−(1−x)+4x+6)/(x+1))=((−1+x+4x+6)/(x+1))  =((5x+5)/(x+1))=((5(x+1))/((x+1)))=5
Prime causes double exponent: use braces to clarifyx2+x=1;x5+8x+1=?x2=1xx5+8x+1=x(x2)2+8x+1=x(1x)2+8x+1=x2x2+x3+8x+1=xx2(2x)+8x+1=x(1x)(2x)+8x+1=x2+x+2xx2+8x+1=x2+4x+6x+1=(1x)+4x+6x+1=1+x+4x+6x+1=5x+5x+1=5\cancel(x+1)\cancel(x+1)=5
Answered by Rasheed.Sindhi last updated on 20/Sep/22
A_(pproach) ^(nOther)  ...  x^2 +x=1;    ((x^5 +8)/(x+1))=?   determinant (((x(x+1)=1)))  ((x^5 +8)/(x+1))  =((x(x^5 +8))/(x(x+1)))        [x(x+1)=1]  =x^6 +x^5 −x^5 +8x  =x^5 (x+1)−x^5 +8x  =x^4 ∙x(x+1)−x^5 +8x  =x^4 +x^4 −x^5 −x^4 +8x  =2x^4 −x^3 .x(x+1)+8x  =2x^4 +2x^3 −3x^3 +8x  =2x^2 .x(x+1)−3x^3 +8x  =5x^2 −3x^3 −3x^2 +8x  =5x^2 −3x.x(x+1)+8x  =5x^2 −3x+8x  =5x^2 +5x  =5x(x+1)  =5
A\boldsymbolpproach\boldsymbolnOtherx2+x=1;x5+8x+1=?x(x+1)=1x5+8x+1=x(x5+8)x(x+1)[x(x+1)=1]=x6+x5x5+8x=x5(x+1)x5+8x=x4x(x+1)x5+8x=x4+x4x5x4+8x=2x4x3.x(x+1)+8x=2x4+2x33x3+8x=2x2.x(x+1)3x3+8x=5x23x33x2+8x=5x23x.x(x+1)+8x=5x23x+8x=5x2+5x=5x(x+1)=5
Commented by Tawa11 last updated on 20/Sep/22
Great sir
Greatsir
Commented by Rasheed.Sindhi last updated on 20/Sep/22
Thanks miss
T\boldsymbolhank\boldsymbols\boldsymbolmiss
Commented by mathlove last updated on 02/Oct/22
thanks a lot
thanksalot
Answered by Peace last updated on 20/Sep/22
x^2 =1−x,x^3 =x−x^2 =2x−1  x^4 =2x^2 −x=2−3x  x^5 =2x−3x^2 =5x−3  ((x^5 +8)/(x+1))=((5x−3+8)/(x+1))=5
x2=1x,x3=xx2=2x1x4=2x2x=23xx5=2x3x2=5x3x5+8x+1=5x3+8x+1=5

Leave a Reply

Your email address will not be published. Required fields are marked *