Menu Close

x-2-x-4-1-dx-




Question Number 49829 by mhozhez last updated on 11/Dec/18
∫(x^2 /(x^4 +1))dx
x2x4+1dx
Commented by maxmathsup by imad last updated on 11/Dec/18
let I = ∫  (x^2 /(x^4  +1))dx vhangement  x =(1/t)  give  I = ∫    (1/(t^2 ( (1/t^4 ) +1))) −(dt/t^2 ) = −∫   (dt/(t^4 (1+(1/t^4 )))) = ∫   (dt/(t^4  +1)) let decompose  F(t) =(1/(1+t^4 )) ⇒F(t) = (1/((t^2  +1)^2 −2t^2 )) =(1/((t^2  +(√2)t +1)(t^2 −(√2)t +1)))  =((at +b)/(t^2  +(√2)t +1)) + ((ct +d)/(t^2  −(√2) t +1)) we have F(−t)=F(t) ⇒  ((−at +b)/(t^2 −(√2)t +1)) +((−ct +d)/(t^2  +(√2)t +1)) =F(t) ⇒c =−a and b=d ⇒  F(t) = ((at +b)/(t^2  +(√2)t +1)) +((−at +b)/(t^2 −(√2)t +1))  F(0) =1 = 2b ⇒b=(1/2)  F(1) =(1/2)= ((a+b)/(2+(√2)))  +((−a+b)/(2−(√2)))  ⇒(((2−(√2))(a+b)+(2+(√2))(−a+b))/2) =(1/2) ⇒  (2−(√2)−2−(√2))a +(2−(√2) +2+(√2))b =1 ⇒  −2(√2)a  +4 .(1/2) =1 ⇒−2(√2)a =−1 ⇒a =(1/(2(√2))) ⇒  F(x) =(((1/(2(√2)))t +(1/2))/(t^2  +(√2)t +1)) +((−(1/(2(√2)))t +(1/2))/(t^2  −(√2)t +1)) ⇒  ∫ F(x)dx = (1/(2(√2))) ∫     ((t +(√2))/(t^2  +(√2)t +1))dt −(1/(2(√2))) ∫  ((t −(√2))/(t^2 −(√2)t +1)) dt  =H −K  2(√2)H =  (1/2) ∫  ((2t +(√2) +(√2))/(t^2  +(√2)t +1)) dt =(1/2)ln(t^2 +(√2)t +1) +((√2)/2) ∫   (dt/(t^2  +(√2)t +1))  ∫    (dt/(t^2  +(√2)t +1)) = ∫     (dt/(t^2  +2 ((√2)/2)t  +(1/2) +1−(1/2))) =∫  (dt/((t +((√2)/2))^2  +(1/2)))  =_(t+((√2)/2)=(1/( (√2))) u)   2∫       (1/(1+u^2 )) (du/( (√2))) =(√2)arctan(((t(√2)+1)/( (√2)))) +c ⇒  2(√2)H = (1/2)ln(t^2  +(√2)t +1) +arctan(((t(√2) +1)/( (√2))))+c   but t =(1/x)  ⇒  H =(1/(4(√2)))ln((1/x^2 ) +((√2)/x) +1) +(1/(2(√2))) arctan((1/x) +(1/( (√2))) ) +c we follow the same  manner for calculus of K .
letI=x2x4+1dxvhangementx=1tgiveI=1t2(1t4+1)dtt2=dtt4(1+1t4)=dtt4+1letdecomposeF(t)=11+t4F(t)=1(t2+1)22t2=1(t2+2t+1)(t22t+1)=at+bt2+2t+1+ct+dt22t+1wehaveF(t)=F(t)at+bt22t+1+ct+dt2+2t+1=F(t)c=aandb=dF(t)=at+bt2+2t+1+at+bt22t+1F(0)=1=2bb=12F(1)=12=a+b2+2+a+b22(22)(a+b)+(2+2)(a+b)2=12(2222)a+(22+2+2)b=122a+4.12=122a=1a=122F(x)=122t+12t2+2t+1+122t+12t22t+1F(x)dx=122t+2t2+2t+1dt122t2t22t+1dt=HK22H=122t+2+2t2+2t+1dt=12ln(t2+2t+1)+22dtt2+2t+1dtt2+2t+1=dtt2+222t+12+112=dt(t+22)2+12=t+22=12u211+u2du2=2arctan(t2+12)+c22H=12ln(t2+2t+1)+arctan(t2+12)+cbutt=1xH=142ln(1x2+2x+1)+122arctan(1x+12)+cwefollowthesamemannerforcalculusofK.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
∫(dx/(x^2 +(1/x^2 )))  =(1/2)∫((1−(1/x^2 )+1+(1/x^2 ))/((x^2 +(1/x^2 ))))dx  =(1/2)∫((d(x+(1/x)))/((x+(1/x))^2 −2))+(1/2)∫((d(x−(1/x)))/((x−(1/x))^2 +2))  =(1/2)×(1/(2(√2) ))ln{(((x+(1/x))−(√2))/((x+(1/x))+(√2)))}+(1/2)×(1/( (√2)))tan^(−1) (((x−(1/x))/( (√2))))+c  pls check...
dxx2+1x2=1211x2+1+1x2(x2+1x2)dx=12d(x+1x)(x+1x)22+12d(x1x)(x1x)2+2=12×122ln{(x+1x)2(x+1x)+2}+12×12tan1(x1x2)+cplscheck
Commented by mhozhez last updated on 11/Dec/18
thanks sir
thankssir
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *