Menu Close

x-2-x-lt-2-x-find-solution-set-




Question Number 100660 by bobhans last updated on 28/Jun/20
∣x^2 −x∣ < 2+x . find solution set.
$$\mid{x}^{\mathrm{2}} −{x}\mid\:<\:\mathrm{2}+{x}\:.\:{find}\:{solution}\:{set}. \\ $$
Commented by bramlex last updated on 28/Jun/20
since ∣x^2 −x∣ ≥0 then 2+x must be >0  (1) 2+x > 0 ; x >−2  (2) (x^2 −x−x−2)(x^2 −x+x+2) <0  (x^2 −2x−2)(x^2 +2)<0  (x−1)^2 −((√3))^2  < 0  (x−1−(√3))(x−1+(√3)) <0  1−(√3) < x < 1+(√3)  solution set we get from (1)∩(2)  ∴ 1−(√3) < x < 1+(√3)
$${since}\:\mid{x}^{\mathrm{2}} −{x}\mid\:\geqslant\mathrm{0}\:{then}\:\mathrm{2}+{x}\:{must}\:{be}\:>\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2}+{x}\:>\:\mathrm{0}\:;\:{x}\:>−\mathrm{2} \\ $$$$\left(\mathrm{2}\right)\:\left({x}^{\mathrm{2}} −{x}−{x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} −{x}+{x}+\mathrm{2}\right)\:<\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)<\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} −\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:<\:\mathrm{0} \\ $$$$\left({x}−\mathrm{1}−\sqrt{\mathrm{3}}\right)\left({x}−\mathrm{1}+\sqrt{\mathrm{3}}\right)\:<\mathrm{0} \\ $$$$\mathrm{1}−\sqrt{\mathrm{3}}\:<\:{x}\:<\:\mathrm{1}+\sqrt{\mathrm{3}} \\ $$$${solution}\:{set}\:{we}\:{get}\:{from}\:\left(\mathrm{1}\right)\cap\left(\mathrm{2}\right) \\ $$$$\therefore\:\mathrm{1}−\sqrt{\mathrm{3}}\:<\:{x}\:<\:\mathrm{1}+\sqrt{\mathrm{3}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *