Menu Close

x-2-xsin-x-cos-x-2-dx-




Question Number 37316 by rahul 19 last updated on 11/Jun/18
∫ (x^2 /((xsin x+cos x)^2 ))dx = ?
$$\int\:\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:=\:? \\ $$
Answered by ajfour last updated on 11/Jun/18
let xsin x+cos x=(√(1+x^2 ))sin (x+tan^(−1) (1/x))  ⇒ (x^2 /((xsin x+cos x)^2 ))=(x^2 /((1+x^2 )sin^2 t))  t=x+tan^(−1) (1/x)  dt=[1−(1/x^2 )((1/(1+(1/x^2 ))))]dx  ⇒  dt =((x^2 dx)/(1+x^2 ))  Hence I=∫cosec^2 tdt            =−cot t+c      or  I=−cot (x+cot^(−1) x)+c .
$${let}\:{x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\mathrm{sin}\:\left({x}+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\right) \\ $$$$\Rightarrow\:\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }=\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\mathrm{sin}\:^{\mathrm{2}} {t}} \\ $$$${t}={x}+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}} \\ $$$${dt}=\left[\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\right)\right]{dx} \\ $$$$\Rightarrow\:\:{dt}\:=\frac{{x}^{\mathrm{2}} {dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${Hence}\:{I}=\int\mathrm{cosec}\:^{\mathrm{2}} {tdt} \\ $$$$\:\:\:\:\:\:\:\:\:\:=−\mathrm{cot}\:{t}+{c} \\ $$$$\:\:\:\:{or}\:\:{I}=−\mathrm{cot}\:\left({x}+\mathrm{cot}^{−\mathrm{1}} {x}\right)+{c}\:. \\ $$
Commented by rahul 19 last updated on 13/Jun/18
Ans. is ((−xsec x)/(xsin x+cos x)) + tan x +c.
$$\mathrm{Ans}.\:\mathrm{is}\:\frac{−{x}\mathrm{sec}\:{x}}{{x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:+\:\mathrm{tan}\:{x}\:+{c}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *