Menu Close

x-2-xy-4x-y-2-xy-4y-log-16-x-1-y-1-x-2-y-2-




Question Number 149040 by mathdanisur last updated on 02/Aug/21
 { ((x^2 +xy=4x)),((y^2 +xy=4y)) :}   ⇒  log_(16) ^((x_1 +y_1 +x_2 +y_2 ))  = ?
$$\begin{cases}{{x}^{\mathrm{2}} +{xy}=\mathrm{4}{x}}\\{{y}^{\mathrm{2}} +{xy}=\mathrm{4}{y}}\end{cases}\:\:\:\Rightarrow\:\:{log}_{\mathrm{16}} ^{\left(\boldsymbol{{x}}_{\mathrm{1}} +\boldsymbol{{y}}_{\mathrm{1}} +\boldsymbol{{x}}_{\mathrm{2}} +\boldsymbol{{y}}_{\mathrm{2}} \right)} \:=\:? \\ $$
Answered by bramlexs22 last updated on 02/Aug/21
(1)+(2)⇔x^2 +2xy+y^2 =4(x+y)  ⇒(x+y)^2 =4(x+y);(x+y)(x+y−4)=0  case(1)⇒x=−y   ⇒x^2 −x^2 =4x ⇒ { ((x_1 =0)),((y_1 =0)) :}  case(2)x=4−y  ⇒x(x+y)=4x ; 4x=4x →x_2 =λ ,y_2 =4−λ  then log _(16) (x_1 +y_1 +x_2 +y_2 )=log _(16) (0+λ+4−λ)  =log _(16) (4)=(1/2)
$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\Leftrightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\mathrm{4}\left(\mathrm{x}+\mathrm{y}\right) \\ $$$$\Rightarrow\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} =\mathrm{4}\left(\mathrm{x}+\mathrm{y}\right);\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{x}+\mathrm{y}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\mathrm{case}\left(\mathrm{1}\right)\Rightarrow\mathrm{x}=−\mathrm{y}\: \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} =\mathrm{4x}\:\Rightarrow\begin{cases}{\mathrm{x}_{\mathrm{1}} =\mathrm{0}}\\{\mathrm{y}_{\mathrm{1}} =\mathrm{0}}\end{cases} \\ $$$$\mathrm{case}\left(\mathrm{2}\right)\mathrm{x}=\mathrm{4}−\mathrm{y} \\ $$$$\Rightarrow\mathrm{x}\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{4x}\:;\:\mathrm{4x}=\mathrm{4x}\:\rightarrow\mathrm{x}_{\mathrm{2}} =\lambda\:,\mathrm{y}_{\mathrm{2}} =\mathrm{4}−\lambda \\ $$$$\mathrm{then}\:\mathrm{log}\:_{\mathrm{16}} \left(\mathrm{x}_{\mathrm{1}} +\mathrm{y}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\mathrm{y}_{\mathrm{2}} \right)=\mathrm{log}\:_{\mathrm{16}} \left(\mathrm{0}+\lambda+\mathrm{4}−\lambda\right) \\ $$$$=\mathrm{log}\:_{\mathrm{16}} \left(\mathrm{4}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathdanisur last updated on 02/Aug/21
Thank You Ser, Cool
$${Thank}\:{You}\:{Ser},\:{Cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *