Menu Close

x-2-xy-dy-dx-xy-y-2-




Question Number 100684 by bemath last updated on 28/Jun/20
(x^2 +xy) (dy/dx) = xy + y^2
$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{xy}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{xy}\:+\:\mathrm{y}^{\mathrm{2}} \\ $$
Answered by bobhans last updated on 28/Jun/20
set y = sx ⇒ (dy/dx) = s + x (ds/dx)  (x^2 +x^2 s) (s +x (ds/dx)) = x^2 s + x^2 s^2   (1+s) (s + x (ds/dx)) = s(s+1)  s + x (ds/dx) = s ⇒ x (ds/dx) = 0   (ds/dx) = 0 ⇒ s = 0+C ; (y/x) = C , x ≠ 0   y = Cx
$$\mathrm{set}\:\mathrm{y}\:=\:\mathrm{sx}\:\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{s}\:+\:\mathrm{x}\:\frac{\mathrm{ds}}{\mathrm{dx}} \\ $$$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \mathrm{s}\right)\:\left(\mathrm{s}\:+\mathrm{x}\:\frac{\mathrm{ds}}{\mathrm{dx}}\right)\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{s}\:+\:\mathrm{x}^{\mathrm{2}} \mathrm{s}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\mathrm{s}\right)\:\left(\mathrm{s}\:+\:\mathrm{x}\:\frac{\mathrm{ds}}{\mathrm{dx}}\right)\:=\:\mathrm{s}\left(\mathrm{s}+\mathrm{1}\right) \\ $$$$\mathrm{s}\:+\:\mathrm{x}\:\frac{\mathrm{ds}}{\mathrm{dx}}\:=\:\mathrm{s}\:\Rightarrow\:\mathrm{x}\:\frac{\mathrm{ds}}{\mathrm{dx}}\:=\:\mathrm{0}\: \\ $$$$\frac{\mathrm{ds}}{\mathrm{dx}}\:=\:\mathrm{0}\:\Rightarrow\:\mathrm{s}\:=\:\mathrm{0}+\mathrm{C}\:;\:\frac{\mathrm{y}}{\mathrm{x}}\:=\:\mathrm{C}\:,\:\mathrm{x}\:\neq\:\mathrm{0}\: \\ $$$$\mathrm{y}\:=\:\mathrm{Cx}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *