Menu Close

x-2-xy-y-2-3y-10-find-the-value-of-dy-dx-at-x-2-




Question Number 99357 by bobhans last updated on 20/Jun/20
x^2 +xy +y^2 −3y = 10 , find the value of  (dy/dx) at x= 2
x2+xy+y23y=10,findthevalueofdydxatx=2
Commented by bemath last updated on 20/Jun/20
x=2 ⇒4+2y+y^2 −3y−10=0  y^2 −y−6=0 ⇒ { ((y=3)),((y=−2)) :}  implicit differentiate   2x +y+x(dy/dx)+2y(dy/dx)−3(dy/dx) = 0  2x+y+(x−3+2y) (dy/dx) = 0  for (2,3) ⇒4+3+(2−3+6) (dy/dx) = 0  (dy/dx) = −(7/5)  for (2,−2)⇒4−2+(2−3−4) (dy/dx) = 0  (dy/dx) = ((−2)/((−5))) = (2/5)
x=24+2y+y23y10=0y2y6=0{y=3y=2implicitdifferentiate2x+y+xdydx+2ydydx3dydx=02x+y+(x3+2y)dydx=0for(2,3)4+3+(23+6)dydx=0dydx=75for(2,2)42+(234)dydx=0dydx=2(5)=25
Answered by mathmax by abdo last updated on 20/Jun/20
x^2  +y^2  +xy−3y =10 ⇒y^2  +(x−3)y +x^2 −10 =0  Δ =(x−3)^2 −4(x^2 −10) =x^2 −6x +9−4x^2  +40 =−3x^2 −6x +49  for Δ≥0 we get  y_1 =((3−x+(√(−3x^2 −6x +49)))/2)  and y_2 =((3−x−(√(−3x^2 −6x +49)))/2)  y=y_1  ⇒y^′  =−(1/2) +(1/2)×((−6x−6)/(2(√(−3x^2 −6x+49)))) =−(1/2)−((3x+3)/(2(√(−3x^2 −6x+49))))  y^′ (2) =−(1/2)−(9/(2(√(−12−12+49)))) =−(1/2)−(9/(10)) =((−5−9)/(10)) =((−14)/(10)) =−(7/5)  y =y_2 ⇒y^′  =−(1/2)−(1/2)×((−6x−6)/(2(√(−3x^2 −6x+49)))) =−(1/2) +(1/2)((3x+3)/( (√(−3x^2 −6x+49)))) ⇒  y^′ (2) =−(1/2) +(9/(2×5)) =−(1/2) +(9/(10)) =((−5+9)/(10)) =(4/(10)) =(2/5)
x2+y2+xy3y=10y2+(x3)y+x210=0Δ=(x3)24(x210)=x26x+94x2+40=3x26x+49forΔ0wegety1=3x+3x26x+492andy2=3x3x26x+492y=y1y=12+12×6x623x26x+49=123x+323x26x+49y(2)=12921212+49=12910=5910=1410=75y=y2y=1212×6x623x26x+49=12+123x+33x26x+49y(2)=12+92×5=12+910=5+910=410=25

Leave a Reply

Your email address will not be published. Required fields are marked *