Menu Close

x-2-y-1-18-and-x-y-2-1-12-find-xy-2-




Question Number 152323 by mathdanisur last updated on 27/Aug/21
x^2 ∙y=(1/(18))  and  x∙y^2 =(1/(12))  find  (xy)^(−2)  = ?
$$\mathrm{x}^{\mathrm{2}} \centerdot\mathrm{y}=\frac{\mathrm{1}}{\mathrm{18}}\:\:\mathrm{and}\:\:\mathrm{x}\centerdot\mathrm{y}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\mathrm{find}\:\:\left(\mathrm{xy}\right)^{−\mathrm{2}} \:=\:? \\ $$
Answered by Olaf_Thorendsen last updated on 27/Aug/21
x^2 y = (1/(18)) and xy^2  = (1/(12))  ⇒ (x^2 y)(xy^2 ) = (xy)^3  = (1/(12×18)) = (1/(216))  xy = (1/( ((216))^(1/3) )) = (1/6)  (xy)^(−2)  = 6^2  = 36
$${x}^{\mathrm{2}} {y}\:=\:\frac{\mathrm{1}}{\mathrm{18}}\:\mathrm{and}\:{xy}^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\Rightarrow\:\left({x}^{\mathrm{2}} {y}\right)\left({xy}^{\mathrm{2}} \right)\:=\:\left({xy}\right)^{\mathrm{3}} \:=\:\frac{\mathrm{1}}{\mathrm{12}×\mathrm{18}}\:=\:\frac{\mathrm{1}}{\mathrm{216}} \\ $$$${xy}\:=\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{216}}}\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\left({xy}\right)^{−\mathrm{2}} \:=\:\mathrm{6}^{\mathrm{2}} \:=\:\mathrm{36} \\ $$
Commented by mathdanisur last updated on 27/Aug/21
Thank You Ser
$$\mathrm{Thank}\:\mathrm{You}\:\mathrm{Ser} \\ $$
Commented by otchereabdullai@gmail.com last updated on 27/Aug/21
nice one!
$$\mathrm{nice}\:\mathrm{one}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *