Menu Close

x-2-y-2-10-x-2-5xy-6y-2-0-find-x-amp-y-




Question Number 99045 by bobhans last updated on 18/Jun/20
 { ((x^2 +y^2  = 10)),((x^2 −5xy+6y^2  = 0)) :}  find x &y
$$\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{10}}\\{\mathrm{x}^{\mathrm{2}} −\mathrm{5xy}+\mathrm{6y}^{\mathrm{2}} \:=\:\mathrm{0}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{x}\:\&\mathrm{y}\: \\ $$
Answered by bemath last updated on 18/Jun/20
⇔x^2 −5xy+6y^2  = 0  (x−2y)(x−3y) = 0   { ((x=2y)),((x=3y)) :}  case(1) x=2y ⇒5y^2 =10 , y=±(√2)  case(2) x=3y⇒10y^2  =10, y=±1  solution (±2(√2) , ±(√2) ) ; (±3 , ±1)
$$\Leftrightarrow\mathrm{x}^{\mathrm{2}} −\mathrm{5xy}+\mathrm{6y}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\left(\mathrm{x}−\mathrm{2y}\right)\left(\mathrm{x}−\mathrm{3y}\right)\:=\:\mathrm{0} \\ $$$$\begin{cases}{\mathrm{x}=\mathrm{2y}}\\{\mathrm{x}=\mathrm{3y}}\end{cases} \\ $$$$\mathrm{case}\left(\mathrm{1}\right)\:\mathrm{x}=\mathrm{2y}\:\Rightarrow\mathrm{5y}^{\mathrm{2}} =\mathrm{10}\:,\:\mathrm{y}=\pm\sqrt{\mathrm{2}} \\ $$$$\mathrm{case}\left(\mathrm{2}\right)\:\mathrm{x}=\mathrm{3y}\Rightarrow\mathrm{10y}^{\mathrm{2}} \:=\mathrm{10},\:\mathrm{y}=\pm\mathrm{1} \\ $$$$\mathrm{solution}\:\left(\pm\mathrm{2}\sqrt{\mathrm{2}}\:,\:\pm\sqrt{\mathrm{2}}\:\right)\:;\:\left(\pm\mathrm{3}\:,\:\pm\mathrm{1}\right)\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *