Question Number 147500 by mathdanisur last updated on 21/Jul/21
$${x}^{\mathrm{2}} \:-\:{y}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:=\:\mathrm{22} \\ $$$${what}\:{is}\:{the}\:{number}\:{of}\:{complete} \\ $$$${solutions}\:{that}\:{satisf}\:{the}\:{equation} \\ $$$$\left({x};{y}\right).? \\ $$
Commented by Mrsof last updated on 21/Jul/21
$${x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}−{y}^{\mathrm{2}} =\mathrm{22}+\mathrm{1}\Rightarrow\left({x}+\mathrm{1}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{23} \\ $$$$ \\ $$$${it}\:{is}\:{four}\:{solution} \\ $$
Answered by Rasheed.Sindhi last updated on 21/Jul/21
$${I}\:{assumed}\:'{number}\:{of}\:\boldsymbol{{integer}}\:\boldsymbol{{solutions}}' \\ $$$${x}^{\mathrm{2}} \:-\:{y}^{\mathrm{2}} \:+\:\mathrm{2}{x}\:=\:\mathrm{22} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\:-\:{y}^{\mathrm{2}} \:\:=\:\mathrm{22}+\mathrm{1} \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{23} \\ $$$$\left({x}−{y}+\mathrm{1}\right)\left({x}+{y}+\mathrm{1}\right)=\mathrm{23} \\ $$$$\mathrm{23}=\mathrm{1}×\mathrm{23}=\mathrm{23}×\mathrm{1}=−\mathrm{1}×−\mathrm{23}=−\mathrm{23}×−\mathrm{1} \\ $$$$\:^{\bullet} {x}−{y}+\mathrm{1}=\mathrm{1}\:\wedge\:{x}+{y}+\mathrm{1}=\mathrm{23} \\ $$$$\:^{\bullet} {x}−{y}+\mathrm{1}=−\mathrm{1}\:\wedge\:{x}+{y}+\mathrm{1}=−\mathrm{23} \\ $$$$\:^{\bullet} {x}−{y}+\mathrm{1}=\mathrm{23}\:\wedge\:{x}+{y}+\mathrm{1}=\mathrm{1} \\ $$$$\:^{\bullet} {x}−{y}+\mathrm{1}=−\mathrm{23}\:\wedge\:{x}+{y}+\mathrm{1}=−\mathrm{1} \\ $$$$\mathrm{Four}\:\mathrm{non}-\mathrm{singular}\:\:\mathrm{systems}\:\:\mathrm{of}\:\: \\ $$$$\mathrm{simultaneous}\:\mathrm{linear}\:\:\mathrm{equations}. \\ $$$$\therefore\:\mathrm{FOUR}\:\mathrm{integral}\:\mathrm{solutions} \\ $$
Commented by mathdanisur last updated on 21/Jul/21
$${thank}\:{you}\:{Sir} \\ $$