Question Number 13647 by chux last updated on 22/May/17
$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{5}…..\left(\mathrm{1}\right) \\ $$$$\mathrm{3x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{y}^{\mathrm{2}} =\mathrm{1}…..\left(\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{find}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$
Commented by ajfour last updated on 22/May/17
$$\mathrm{2}{x}^{\mathrm{2}} +{xy}+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)=\mathrm{1} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{xy}+\mathrm{4}=\mathrm{0}\:\:\Rightarrow{y}=−\left(\mathrm{2}{x}+\frac{\mathrm{4}}{{x}}\right)\:..\left({i}\right) \\ $$$${squaring}, \\ $$$${x}^{\mathrm{2}} {y}^{\mathrm{2}} =\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{5}−{x}^{\mathrm{2}} \right)=\mathrm{4}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \\ $$$$−\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} +\mathrm{9}\left({x}^{\mathrm{2}} +\mathrm{2}\right)−\mathrm{14}=\mathrm{4}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\mathrm{5}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\mathrm{9}\left({x}^{\mathrm{2}} +\mathrm{2}\right)+\mathrm{14}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}=\frac{\mathrm{9}\pm\sqrt{\mathrm{81}−\mathrm{280}}}{\mathrm{10}} \\ $$$${x}^{\mathrm{2}} =−\frac{\mathrm{11}}{\mathrm{10}}\pm\sqrt{\left(\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{2}} −\mathrm{2}}\:\:\:\:\:\:….\left({ii}\right) \\ $$$${y}=−\left(\mathrm{2}{x}+\frac{\mathrm{4}}{{x}}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\left({i}\right) \\ $$$${difficult}\:{for}\:{me}\:{beyond}\:{this}\:{point}.. \\ $$
Commented by prakash jain last updated on 22/May/17
$$\mathrm{3}{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{xy}+\mathrm{5}=\mathrm{1} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{xy}=−\mathrm{4}\:\:\:….\left({A}\right) \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{5}\Rightarrow{x}=\sqrt{\mathrm{5}}\mathrm{cos}\:\theta\Rightarrow{y}=\sqrt{\mathrm{5}}\mathrm{sin}\:\theta \\ $$$${substituting}\:{in}\:\left({A}\right) \\ $$$$\mathrm{10cos}^{\mathrm{2}} \theta+\mathrm{5cos}\:\theta\mathrm{sin}\:\theta=−\mathrm{4} \\ $$$$\mathrm{cos}^{\mathrm{2}} \theta=\left(\mathrm{cos}\:\mathrm{2}\theta+\mathrm{1}\right)/\mathrm{2},\mathrm{2sin}\:\theta\mathrm{cos}\:\theta=\mathrm{sin}\:\mathrm{2}\theta \\ $$$$\mathrm{5}\left(\mathrm{cos}\:\mathrm{2}\theta+\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}\theta=−\mathrm{4} \\ $$$$\mathrm{10cos}\:\mathrm{2}\theta+\mathrm{10}+\mathrm{5sin}\:\mathrm{2}\theta=−\mathrm{8} \\ $$$$\mathrm{10cos}\:\mathrm{2}\theta+\mathrm{5sin}\:\mathrm{2}\theta=−\mathrm{18} \\ $$$$\mathrm{2cos}\:\mathrm{2}\theta+\mathrm{sin}\:\mathrm{2}\theta=\frac{−\mathrm{18}}{\mathrm{5}} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\mathrm{cos}\:\mathrm{2}\theta+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\mathrm{sin}\:\mathrm{2}\theta=−\frac{\mathrm{18}}{\mathrm{5}\sqrt{\mathrm{5}}} \\ $$$$\mathrm{sin}\:\left(\mathrm{2}\theta+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}\right)=−\frac{\mathrm{18}}{\mathrm{5}\sqrt{\mathrm{5}}}>\mathrm{1} \\ $$$$\mathrm{5}\sqrt{\mathrm{5}}\approx\mathrm{11}.\mathrm{18}<\mathrm{18} \\ $$$${no}\:{real}\:{solution}. \\ $$
Commented by ajfour last updated on 22/May/17
$${line}#\mathrm{9}\rightarrow{line}#\mathrm{10} \\ $$$$−\mathrm{8}−\mathrm{50}\neq−\mathrm{42} \\ $$
Commented by prakash jain last updated on 22/May/17
$${ok}.\:{will}\:{correct} \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/May/17
$$\frac{{x}}{{y}}={t} \\ $$$$\begin{cases}{{t}^{\mathrm{2}} +\mathrm{1}=\frac{\mathrm{5}}{{y}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\left({i}\right)}\\{\mathrm{3}{t}^{\mathrm{2}} +{t}+\mathrm{1}=\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\:\:\:\:\:\left({ii}\right)}\end{cases} \\ $$$$\left({i}\right)−\mathrm{5}\left({ii}\right)\Rightarrow{t}^{\mathrm{2}} +\mathrm{1}−\mathrm{15}{t}^{\mathrm{2}} −\mathrm{5}{t}−\mathrm{5}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{14}{t}^{\mathrm{2}} +\mathrm{5}{t}+\mathrm{4}=\mathrm{0} \\ $$$${t}=\frac{−\mathrm{5}\pm\sqrt{\mathrm{25}−\mathrm{14}×\mathrm{16}}}{\mathrm{28}}=\frac{−\mathrm{5}\pm{i}\sqrt{\mathrm{199}}}{\mathrm{28}} \\ $$$$\Rightarrow\frac{{x}}{{y}}=−\mathrm{0}.\mathrm{18}\pm\mathrm{0}.\mathrm{5}\boldsymbol{{i}}\:\:\:\:\left(\boldsymbol{{i}}^{\mathrm{2}} =−\mathrm{1}\right) \\ $$$$\boldsymbol{{no}}\:\boldsymbol{{real}}\:\boldsymbol{{answers}}. \\ $$
Commented by tawa tawa last updated on 22/May/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$