Question Number 104669 by bramlex last updated on 23/Jul/20
$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\:{dy}\:=\:{xy}\:{dx}\: \\ $$
Answered by bemath last updated on 23/Jul/20
$${set}\:{y}\:=\:{zx}\: \\ $$$$\frac{{dy}}{{dx}}\:=\:{z}\:+\:{x}\:\frac{{dz}}{{dx}} \\ $$$$\Rightarrow\:\frac{{dy}}{{dx}}\:=\:\frac{{xy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Rightarrow{z}\:+\:{x}\:\frac{{dz}}{{dx}}\:=\:\frac{{zx}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)} \\ $$$${z}\:+\:{x}\:\frac{{dz}}{{dx}}\:=\:\frac{{z}}{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$${x}\:\frac{{dz}}{{dx}}\:=\:\frac{{z}−{z}−{z}^{\mathrm{3}} }{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}+{z}^{\mathrm{2}} }{{z}^{\mathrm{3}} }\:{dz}\:=\:−\frac{{dx}}{{x}} \\ $$$$\int\:\left\{{z}^{−\mathrm{3}} +\:\frac{\mathrm{1}}{{z}}\right\}\:{dz}\:=\:\mathrm{ln}\:\mid\frac{{C}}{{x}}\mid \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}{z}^{\mathrm{2}} }\:=\:\mathrm{ln}\:\mid\frac{{C}}{{zx}}\mid\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{z}^{\mathrm{2}} }\:=\:\mathrm{ln}\:\mid\frac{{zx}}{{C}}\mid\:\Rightarrow\frac{{zx}}{{C}}\:=\:{e}^{\frac{\mathrm{1}}{\mathrm{2}{z}^{\mathrm{2}} }} \\ $$$$\therefore\:{y}\:=\:{Ce}^{\frac{\mathrm{1}}{\left(\frac{\mathrm{2}{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)}} =\:{C}^{\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}{y}^{\mathrm{2}} }} \:\blacksquare\: \\ $$
Answered by OlafThorendsen last updated on 23/Jul/20
$${y}\left({x}\frac{{dx}}{{dy}}\right)−{x}^{\mathrm{2}} \:=\:{y}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{yx}^{\mathrm{2}} −\int\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} {dy}−\int{x}^{\mathrm{2}} {dy}\:=\:\frac{{y}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{C}_{\mathrm{1}} \\ $$$${u}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int{x}^{\mathrm{2}} {dy} \\ $$$${yu}'−\mathrm{3}{u}\:=\:\frac{{y}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{C}_{\mathrm{1}} \\ $$$${y}^{\mathrm{3}} {u}'−\mathrm{3}{y}^{\mathrm{2}} {u}\:=\:\frac{{y}^{\mathrm{5}} }{\mathrm{3}}+\mathrm{C}_{\mathrm{1}} {y}^{\mathrm{2}} \\ $$$$\frac{{y}^{\mathrm{3}} {u}'−\mathrm{3}{y}^{\mathrm{2}} {u}}{{y}^{\mathrm{6}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}{y}}+\frac{\mathrm{C}_{\mathrm{1}} }{{y}^{\mathrm{4}} } \\ $$$$\frac{{d}}{{dy}}\left(\frac{{u}}{{y}^{\mathrm{3}} }\right)\:=\:\frac{\mathrm{1}}{\mathrm{3}{y}}+\frac{\mathrm{C}_{\mathrm{1}} }{{y}^{\mathrm{4}} } \\ $$$$\frac{{u}}{{y}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\mid{y}\mid+\frac{\mathrm{C}_{\mathrm{2}} }{{y}^{\mathrm{3}} }+\mathrm{C}_{\mathrm{3}} \\ $$$${u}\:=\:\frac{\mathrm{1}}{\mathrm{3}}{y}^{\mathrm{3}} \mathrm{ln}\mid{y}\mid+\mathrm{C}_{\mathrm{3}} {y}^{\mathrm{3}} +\mathrm{C}_{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{2}{u}'\:=\:\mathrm{2}{y}^{\mathrm{2}} \mathrm{ln}\mid{y}\mid+\frac{\mathrm{2}{y}^{\mathrm{2}} }{\mathrm{3}}\:+\mathrm{C}_{\mathrm{4}} {y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \:=\:\mathrm{2}{y}^{\mathrm{2}} \mathrm{ln}\mid{y}\mid\:+\mathrm{C}_{\mathrm{5}} {y}^{\mathrm{2}} \\ $$$${x}\left({y}\right)\:=\:\pm{y}\sqrt{\mathrm{ln}{y}^{\mathrm{2}} +\mathrm{C}_{\mathrm{5}} } \\ $$
Answered by Dwaipayan Shikari last updated on 23/Jul/20
$$\left({x}^{\mathrm{2}} +{v}^{\mathrm{2}} {x}^{\mathrm{2}} \right){dy}={vx}^{\mathrm{2}} {dx} \\ $$$$\frac{{dy}}{{dx}}=\frac{{v}}{\mathrm{1}+{v}^{\mathrm{2}} } \\ $$$$\frac{{dv}}{{dx}}{x}=\frac{{v}−{v}−{v}^{\mathrm{3}} }{\mathrm{1}+{v}^{\mathrm{2}} } \\ $$$$\int\frac{\mathrm{1}+{v}^{\mathrm{2}} }{{v}^{\mathrm{3}} }{dv}=\int−\frac{{dx}}{{x}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}{v}^{\mathrm{2}} }+{logv}=−{logx}+{C} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{v}^{\mathrm{2}} }={log}\left({vx}\right)+{C} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}{y}^{\mathrm{2}} }={log}\left({y}\right)+{log}\left({C}_{\mathrm{1}} \right) \\ $$$${y}={C}_{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}{y}^{\mathrm{2}} }} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$