Question Number 96182 by bemath last updated on 30/May/20
$${x}^{\mathrm{2}} {y}''−{xy}'+\mathrm{y}\:=\:\mathrm{0}\: \\ $$
Answered by john santu last updated on 30/May/20
$$\mathrm{let}\:{y}\:=\:{sx}\:\Rightarrow\mathrm{y}'=\:{s}+{xs}^{'} \\ $$$$\mathrm{y}''\:=\:{xs}''+\mathrm{2}{s}' \\ $$$$\Rightarrow{x}^{\mathrm{2}} \left({xs}''+\mathrm{2}{s}'\right)−{x}\left({s}+{xs}'\right)+{sx}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} {s}''+\mathrm{2}{x}^{\mathrm{2}} {s}'−{xs}−{x}^{\mathrm{2}} {s}'+{xs}\:=\:\mathrm{0} \\ $$$${x}^{\mathrm{3}} {s}''+\:{x}^{\mathrm{2}} {s}'\:=\:\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left({xs}''\:+\:{s}'\:\right)\:=\:\mathrm{0} \\ $$$$\mathrm{put}\:\mathrm{t}\:=\:{s}'\:\Rightarrow\mathrm{t}'\:=\:{s}''\: \\ $$$${x}\mathrm{t}'\:+\:\mathrm{t}\:=\:\mathrm{0}\:\Rightarrow\frac{{dt}}{{t}}\:=\:−\frac{{dx}}{{x}} \\ $$$${t}\:=\:\frac{\mathrm{C}_{\mathrm{1}} }{{x}}\:\Rightarrow\:\frac{{ds}}{{dx}}\:=\:\frac{{C}_{\mathrm{1}} }{{x}} \\ $$$$\Rightarrow{s}\:=\:{C}_{\mathrm{1}} \mathrm{ln}\left({x}\right)\:+\:{C}_{\mathrm{2}} \\ $$$$\therefore\:\frac{\mathrm{y}}{{x}}\:=\:{C}_{\mathrm{1}} \:\mathrm{ln}\left({x}\right)\:+{C}_{\mathrm{2}} \\ $$$$\mathrm{y}\:=\:{x}\:\left\{{C}_{\mathrm{1}} \mathrm{ln}\left({x}\right)\:+{C}_{\mathrm{2}} \:\right\}\: \\ $$$$\mathrm{y}\:=\:\mathrm{C}_{\mathrm{1}} {x}\:\mathrm{ln}\left({x}\right)\:+\:{C}_{\mathrm{2}} {x}\: \\ $$