Menu Close

x-2-y-xy-y-0-




Question Number 130830 by Ar Brandon last updated on 29/Jan/21
x^2 y′′−xy′+y=0
$$\mathrm{x}^{\mathrm{2}} \mathrm{y}''−\mathrm{xy}'+\mathrm{y}=\mathrm{0} \\ $$
Answered by bemath last updated on 29/Jan/21
Cauchy−Euler diff eq  let y = x^m  → { ((y′=mx^(m−1) )),((y′′=(m^2 −m)x^(m−2) )) :}  ⇔ m^2 −2m+1=0 ; m=1;1  y = C_1 x+C_2 x ln x= x(C_1 +C_2 ln x )
$$\mathrm{Cauchy}−\mathrm{Euler}\:\mathrm{diff}\:\mathrm{eq} \\ $$$$\mathrm{let}\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{m}} \:\rightarrow\begin{cases}{\mathrm{y}'=\mathrm{mx}^{\mathrm{m}−\mathrm{1}} }\\{\mathrm{y}''=\left(\mathrm{m}^{\mathrm{2}} −\mathrm{m}\right)\mathrm{x}^{\mathrm{m}−\mathrm{2}} }\end{cases} \\ $$$$\Leftrightarrow\:\mathrm{m}^{\mathrm{2}} −\mathrm{2m}+\mathrm{1}=\mathrm{0}\:;\:\mathrm{m}=\mathrm{1};\mathrm{1} \\ $$$$\mathrm{y}\:=\:\mathrm{C}_{\mathrm{1}} \mathrm{x}+\mathrm{C}_{\mathrm{2}} \mathrm{x}\:\mathrm{ln}\:\mathrm{x}=\:\mathrm{x}\left(\mathrm{C}_{\mathrm{1}} +\mathrm{C}_{\mathrm{2}} \mathrm{ln}\:\mathrm{x}\:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *