Menu Close

x-2-yz-a-n-y-2-zx-b-n-z-2-xy-c-n-find-x-y-z-in-terms-of-a-b-c-




Question Number 192875 by York12 last updated on 30/May/23
x^2 −yz=a^n   y^2 −zx=b^n   z^2 −xy=c^n   find (x , y , z) in terms of (a , b , c)
x2yz=any2zx=bnz2xy=cnfind(x,y,z)intermsof(a,b,c)
Answered by Frix last updated on 30/May/23
My path:  1. y=px∧z=qx  2. p=u+v∧q=u−v  It′s then possible to solve the system.  I got  u=((b^(2n) +c^(2n) −a^n (b^n +c^n ))/(2(a^(2n) −b^n c^n )))∧v=(((a^n +b^n +c^n )(c^n −b^n ))/(2(a^(2n) −b^n c^n )))  p=((b^(2n) −a^n c^n )/(a^(2n) −b^n c^n ))∧q=((c^(2n) −a^n b^n )/(a^(2n) −b^n c^n ))  x=±((a^(2n) −b^n c^n )/( (√(a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n ))))  y=±((b^(2n) −a^n c^n )/( (√(a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n ))))  z=±((c^(2n) −a^n b^n )/( (√(a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n ))))  I′m too lazy to type the complete workings  but everybody should be able to do it if  needed.
Mypath:1.y=pxz=qx2.p=u+vq=uvItsthenpossibletosolvethesystem.Igotu=b2n+c2nan(bn+cn)2(a2nbncn)v=(an+bn+cn)(cnbn)2(a2nbncn)p=b2nancna2nbncnq=c2nanbna2nbncnx=±a2nbncna3n+b3n+c3n3anbncny=±b2nancna3n+b3n+c3n3anbncnz=±c2nanbna3n+b3n+c3n3anbncnImtoolazytotypethecompleteworkingsbuteverybodyshouldbeabletodoitifneeded.
Commented by York12 last updated on 30/May/23
thanks so much sir that was more than  enough
thankssomuchsirthatwasmorethanenough
Commented by York12 last updated on 30/May/23
you have exploited that all of them are   homogeneous equations of the second degree
youhaveexploitedthatallofthemarehomogeneousequationsoftheseconddegree
Answered by MM42 last updated on 30/May/23
1)x^2 −yz=a^n  →^(×y)  x^2 y−y^2 z=a^n y  (i)  2)y^2 −zx=b^n  →^(×z)  y^2 z−z^2 x=b^n z   (ii)  3)z^2 −xy=c^n  →^(×x)  xz^2 −x^2 y=c^n x  (iii)  (i)+(ii)+(iii)→c^n x+a^n y+b^n z=0   (iv)  if  1)→^(×z)   & 2)→^(×x)  & 3)→^(×y)   and  sum of obtined relation→ b^n x+c^n y+a^n z=0  (v)  a^n ×(iv)−b^n ×(v)→(a^n c^n −b^(2n) )x+(a^(2n) −b^n c^n )y=0  ⇒x=((a^(2n) −b^n c^n )/(b^(2n) −a^n c^n )) y   (vi)  c^n ×(iv)−a^n ×(v)→(c^(2n) −a^n b^n )x+(b^n c^n −a^(2n) )z=0  ⇒x=((a^(2n) −b^n c^n )/(a^n b^n −c^(2n) )) z    (vii)  (vi) & (vii) ⇒ (x/(a^(2n) −b^n c^n ))=(y/(b^(2n) −a^n c^n ))=(z/(a^n b^n −c^(2n) ))
1)x2yz=an×yx2yy2z=any(i)2)y2zx=bn×zy2zz2x=bnz(ii)3)z2xy=cn×xxz2x2y=cnx(iii)(i)+(ii)+(iii)cnx+any+bnz=0(iv)if1)×z&2)×x&3)×yandsumofobtinedrelationbnx+cny+anz=0(v)an×(iv)bn×(v)(ancnb2n)x+(a2nbncn)y=0x=a2nbncnb2nancny(vi)cn×(iv)an×(v)(c2nanbn)x+(bncna2n)z=0x=a2nbncnanbnc2nz(vii)(vi)&(vii)xa2nbncn=yb2nancn=zanbnc2n
Commented by York12 last updated on 30/May/23
good job sir
goodjobsir
Commented by Frix last updated on 30/May/23
But the job is not done yet...
Butthejobisnotdoneyet
Commented by York12 last updated on 30/May/23
the rest is trivial sir
therestistrivialsir
Commented by York12 last updated on 30/May/23
  1)x^2 −yz=a^n  →^(×y)  x^2 y−y^2 z=a^n y  (i)  2)y^2 −zx=b^n  →^(×z)  y^2 z−z^2 x=b^n z   (ii)  3)z^2 −xy=c^n  →^(×x)  xz^2 −x^2 y=c^n x  (iii)  (i)+(ii)+(iii)→c^n x+a^n y+b^n z=0   (iv)  if  1)→^(×z)   & 2)→^(×x)  & 3)→^(×y)   and  sum of obtined relation→ b^n x+c^n y+a^n z=0  (v)  a^n ×(iv)−b^n ×(v)→(a^n c^n −b^(2n) )x+(a^(2n) −b^n c^n )y=0  ⇒x=((a^(2n) −b^n c^n )/(b^(2n) −a^n c^n )) y   (vi)  c^n ×(iv)−a^n ×(v)→(c^(2n) −a^n b^n )x+(b^n c^n −a^(2n) )z=0  ⇒x=((a^(2n) −b^n c^n )/(a^n b^n −c^(2n) )) z    (vii)  (vi) & (vii) ⇒ (x/(a^(2n) −b^n c^n ))=(y/(b^(2n) −a^n c^n ))=(z/(a^n b^n −c^(2n) ))=λ  by subtituting  we get   λ^2 (a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n )=1  λ=((+_− 1)/( (√(a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n ))))  ∴ x= ((+_− (a^(2n) −b^n c^n ))/( (√(a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n ))))   , y=((+_− (b^(2n) −c^n a^n ))/( (√(a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n ))))  z= ((+_− (c^(2n) −a^n b^n ))/( (√(a^(3n) +b^(3n) +c^(3n) −3a^n b^n c^n ))))
1)x2yz=an×yx2yy2z=any(i)2)y2zx=bn×zy2zz2x=bnz(ii)3)z2xy=cn×xxz2x2y=cnx(iii)(i)+(ii)+(iii)cnx+any+bnz=0(iv)if1)×z&2)×x&3)×yandsumofobtinedrelationbnx+cny+anz=0(v)an×(iv)bn×(v)(ancnb2n)x+(a2nbncn)y=0x=a2nbncnb2nancny(vi)cn×(iv)an×(v)(c2nanbn)x+(bncna2n)z=0x=a2nbncnanbnc2nz(vii)(vi)&(vii)xa2nbncn=yb2nancn=zanbnc2n=λbysubtitutingwegetλ2(a3n+b3n+c3n3anbncn)=1λ=+1a3n+b3n+c3n3anbncnx=+(a2nbncn)a3n+b3n+c3n3anbncn,y=+(b2ncnan)a3n+b3n+c3n3anbncnz=+(c2nanbn)a3n+b3n+c3n3anbncn

Leave a Reply

Your email address will not be published. Required fields are marked *