Menu Close

x-2y-2-dx-2x-y-3-dy-0-




Question Number 127287 by liberty last updated on 28/Dec/20
  (x+2y−2)dx + (2x+y+3) dy = 0
$$\:\:\left({x}+\mathrm{2}{y}−\mathrm{2}\right){dx}\:+\:\left(\mathrm{2}{x}+{y}+\mathrm{3}\right)\:{dy}\:=\:\mathrm{0} \\ $$
Answered by bemath last updated on 28/Dec/20
Commented by liberty last updated on 28/Dec/20
grazzi. eż
Commented by liberty last updated on 28/Dec/20
⇔(x−2)dx+(y+3)dy +2(ydx+xdy) = 0  ⇔ (x−2)dx+(y+3)dy+2d(xy) = 0  ⇔ (1/2)(x−2)^2 +(1/2)(y+3)^2  +2xy = C_1    ⇔(1/2)x^2 +(1/2)y^2 +2xy−2x+3y  = C_2   ⇔ x^2 +y^2 +4xy−4x+6y = C
$$\Leftrightarrow\left({x}−\mathrm{2}\right){dx}+\left({y}+\mathrm{3}\right){dy}\:+\mathrm{2}\left({ydx}+{xdy}\right)\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\left({x}−\mathrm{2}\right){dx}+\left({y}+\mathrm{3}\right){dy}+\mathrm{2}{d}\left({xy}\right)\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left({y}+\mathrm{3}\right)^{\mathrm{2}} \:+\mathrm{2}{xy}\:=\:{C}_{\mathrm{1}} \: \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{y}^{\mathrm{2}} +\mathrm{2}{xy}−\mathrm{2}{x}+\mathrm{3}{y}\:\:=\:{C}_{\mathrm{2}} \\ $$$$\Leftrightarrow\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}{xy}−\mathrm{4}{x}+\mathrm{6}{y}\:=\:{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *