Menu Close

x-3-1-x-3-1-then-prove-that-x-5-1-x-5-3-1-x-5-1-x-5-3-




Question Number 174177 by mathlove last updated on 26/Jul/22
x^3 +(1/x^3 )=1     then prove that  (((x^5 +(1/x^5 ))^3 −1)/(x^5 +(1/x^5 )))=3
x3+1x3=1thenprovethat(x5+1x5)31x5+1x5=3
Answered by mr W last updated on 26/Jul/22
(x+(1/x))^3 =x^3 +(1/x^3 )+3(x+(1/x))  P=x+(1/x)  P^3 =3P+1  (x+(1/x))^2 =x^2 +(1/x^2 )+2  x^2 +(1/x^2 )=P^2 −2  (x^3 +(1/x^3 ))(x^2 +(1/x^2 ))=x^5 +(1/x^5 )+x+(1/x)  x^5 +(1/x^5 )=P^2 −P−2  (x^5 +(1/x^5 ))^3 =P^6 −3P^5 −3P^4 +11P^3 +6P^2 −12P−8  (x^5 +(1/x^5 ))^3 =(3P+1)^2 −3P^2 (3P+1)−3P(3P+1)+11(3P+1)+6P^2 −12P−8  (x^5 +(1/x^5 ))^3 =9P^2 +6P+1−9P^3 −3P^2 −9P^2 −3P+33P+11+6P^2 −12P−8  (x^5 +(1/x^5 ))^3 =−9P^3 +3P^2 +24P+4  (x^5 +(1/x^5 ))^3 =−9(3P+1)+3P^2 +24P+4  (x^5 +(1/x^5 ))^3 =3P^2 −3P−5  (x^5 +(1/x^5 ))^3 −1=3P^2 −3P−6  (x^5 +(1/x^5 ))^3 −1=3(P^2 −P−2)=3(x^5 +(1/x^5 ))  ⇒(((x^5 +(1/x^5 ))^3 −1)/((x^5 +(1/x^5 ))))=3 ✓
(x+1x)3=x3+1x3+3(x+1x)P=x+1xP3=3P+1(x+1x)2=x2+1x2+2x2+1x2=P22(x3+1x3)(x2+1x2)=x5+1x5+x+1xx5+1x5=P2P2(x5+1x5)3=P63P53P4+11P3+6P212P8(x5+1x5)3=(3P+1)23P2(3P+1)3P(3P+1)+11(3P+1)+6P212P8(x5+1x5)3=9P2+6P+19P33P29P23P+33P+11+6P212P8(x5+1x5)3=9P3+3P2+24P+4(x5+1x5)3=9(3P+1)+3P2+24P+4(x5+1x5)3=3P23P5(x5+1x5)31=3P23P6(x5+1x5)31=3(P2P2)=3(x5+1x5)(x5+1x5)31(x5+1x5)=3
Commented by mathlove last updated on 26/Jul/22
thanks mr W
thanksmrW
Answered by chengulapetrom last updated on 26/Jul/22
(x+(1/x))^5 =x^5 +5x^4 ((1/x))+10x^3 ((1/x))^2 +10x^2 ((1/x))^3 +5x((1/x))^4 +((1/x))^5   =x^5 +(1/x^5 )+5(x^3 +(1/x^3 ))+10(x+(1/x))  =x^5 +(1/x^5 )+10(x+(1/x))+5  (x+(1/x))^5 =x^5 +(1/x^5 )+10(x+(1/x))+5  (x+(1/x))^3 =x^3 +3(x+(1/x))+(1/x^3 )  (x+(1/x))^3 =3(x+(1/x))+1  (x+(1/x))^3 −3(x+(1/x))−1=0  (x+(1/x))^3 −1=3(x+(1/x))  (((x+(1/x))^3 −1)/((x+(1/x))))=3  similarly (((x^5 +(1/x^5 ))^3 −1)/(x^5 +(1/x^5 )))=3
(x+1x)5=x5+5x4(1x)+10x3(1x)2+10x2(1x)3+5x(1x)4+(1x)5=x5+1x5+5(x3+1x3)+10(x+1x)=x5+1x5+10(x+1x)+5(x+1x)5=x5+1x5+10(x+1x)+5(x+1x)3=x3+3(x+1x)+1x3(x+1x)3=3(x+1x)+1(x+1x)33(x+1x)1=0(x+1x)31=3(x+1x)(x+1x)31(x+1x)=3similarly(x5+1x5)31x5+1x5=3
Commented by chengulapetrom last updated on 26/Jul/22
Mr W am I correct
MrWamIcorrect
Commented by mr W last updated on 27/Jul/22
i don′t think it′s “similary” that  (((x^5 +(1/x^5 ))^3 −1)/(x^5 +(1/x^5 )))=3 and (((x+(1/x))^3 −1)/((x+(1/x))))=3.  you must show it. or maybe i didn′t   understand you correctly.  in fact (((x^3 +(1/x^3 ))^3 −1)/(x^3 +(1/x^3 )))≠3 and  (((x^4 +(1/x^4 ))^3 −1)/(x^4 +(1/x^4 )))≠3 etc.
idontthinkitssimilarythat(x5+1x5)31x5+1x5=3and(x+1x)31(x+1x)=3.youmustshowit.ormaybeididntunderstandyoucorrectly.infact(x3+1x3)31x3+1x33and(x4+1x4)31x4+1x43etc.
Answered by mr W last updated on 26/Jul/22
let P_n =x^n +(1/x^n )  P_1 =e_1 =p  P_2 =e_1 P_1 −2e_2 =p^2 −2  P_n =e_1 P_(n−1) −e_2 P_(n−2)   P_3 =e_1 P_2 −P_1   1=p(p^2 −2)−p  p^3 −3p−1=0  P_4 =pP_3 −P_2 =p−p^2 +2=−p^2 +p+2  P_5 =pP_4 −P_3 =(−p^2 +p+2)p−1=−p^3 +p^2 +2p−1  P_5 =−3p−1+p^2 +2p−1=p^2 −p−2  ......
letPn=xn+1xnP1=e1=pP2=e1P12e2=p22Pn=e1Pn1e2Pn2P3=e1P2P11=p(p22)pp33p1=0P4=pP3P2=pp2+2=p2+p+2P5=pP4P3=(p2+p+2)p1=p3+p2+2p1P5=3p1+p2+2p1=p2p2
Answered by Rasheed.Sindhi last updated on 27/Jul/22
  x^6 =x^3 −1  x^5 =((x^3 −1)/x)    ▶x^5 +(1/x^5 )=((x^3 −1)/x)+(x/(x^3 −1))        =(((x^3 −1)^2 +x^2 )/(x(x^3 −1)))=((x^6 −2x^3 +1+x^2 )/(x(x^3 −1)))       =((x^3 −1−2x^3 +1+x^2 )/(x(x^3 −1)))       =((−x^3 +x^2 )/(x(x^3 −1)))=((−x(x−1))/((x−1)(x^2 +x+1)))    =((−1)/((x^2 +x+1)/x))=((−1)/(x+(1/x)_() +1))=−(1/(p+1))    ▶(((x^5 +(1/x^5 ))^3 −1)/(x^5 +(1/x^5 )))=(((−(1/(p+1)))^3 −1)/(−(1/(p+1))))  =((((1/(p+1)))^3 +1)/(1/(p+1)))  =((((1/(p+1))+1)( ((1/(p+1)))^2 −((1/(p+1)))+1))/(1/(p+1)))  =(((p+2)/(p+1)))(((1−(p+1)+(p+1)^2 )/((p+1)^2 )))(p+1)  =(((p+2)(1−p−1+p^2 +2p+1))/((p+1)^2 ))  =(((p+2)(p^2 +p+1))/((p+1)^2 ))  =(((p−1+3)(p^2 +p+1))/((p+1)^2 ))  =(((p−1)(p^2 +p+1)+3(p^2 +p+1))/((p+1)^2 ))  =((p^3 −1+3p^2 +3p+3)/((p+1)^2 ))  =((p^3 +3p^2 +3p+2)/((p+1)^2 ))−3+3  =((p^3 +3p^2 +3p+2−3p^2 −6p−3)/(p^2 +2p+1))+3  =((p^3 −3p−1)/(p^2 +2p+1))+3  =(((x+(1/x))^3 −3(x+(1/x))−1)/((x+(1/x))^2 +2(x+(1/x))+1))+3  =((x^3 +(1/x^3 )+3(x+(1/x))−3(x+(1/x))−1)/((x+(1/x))^2 +2(x+(1/x))+1))+3  =((1−1)/((x+(1/x))^2 +2(x+(1/x))+1))+3  =3
x6=x31x5=x31xx5+1x5=x31x+xx31=(x31)2+x2x(x31)=x62x3+1+x2x(x31)=x312x3+1+x2x(x31)=x3+x2x(x31)=x(x1)(x1)(x2+x+1)=1x2+x+1x=1x+1x+1=1p+1(x5+1x5)31x5+1x5=(1p+1)311p+1=(1p+1)3+11p+1=(1p+1+1)((1p+1)2(1p+1)+1)1p+1=(p+2p+1)(1(p+1)+(p+1)2(p+1)2)(p+1)=(p+2)(1p1+p2+2p+1)(p+1)2=(p+2)(p2+p+1)(p+1)2=(p1+3)(p2+p+1)(p+1)2=(p1)(p2+p+1)+3(p2+p+1)(p+1)2=p31+3p2+3p+3(p+1)2=p3+3p2+3p+2(p+1)23+3=p3+3p2+3p+23p26p3p2+2p+1+3=p33p1p2+2p+1+3=(x+1x)33(x+1x)1(x+1x)2+2(x+1x)+1+3=x3+1x3+3(x+1x)3(x+1x)1(x+1x)2+2(x+1x)+1+3=11(x+1x)2+2(x+1x)+1+3=3

Leave a Reply

Your email address will not be published. Required fields are marked *