Menu Close

x-3-2-x-3-x-1-x-2-




Question Number 89226 by cindiaulia last updated on 16/Apr/20
∫(((x^3 +2)/x^3 ))(√(x−(1/x^2 )))
$$\int\left(\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{2}}{\mathrm{x}^{\mathrm{3}} }\right)\sqrt{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \\ $$
Commented by jagoll last updated on 16/Apr/20
∫ (1+(2/x^3 )) (√(x−(1/x^2 ))) dx   u = x−(1/x^2 ) ⇒du = 1+(2/x^3 )  ∫ u^(1/2)  du = (2/3)u^(3/2)  +c  = (2/3)(x−(1/x^2 ))^(3/2) +c
$$\int\:\left(\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{3}} }\right)\:\sqrt{{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:{dx}\: \\ $$$${u}\:=\:{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\Rightarrow{du}\:=\:\mathrm{1}+\frac{\mathrm{2}}{{x}^{\mathrm{3}} } \\ $$$$\int\:{u}^{\frac{\mathrm{1}}{\mathrm{2}}} \:{du}\:=\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+{c} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{3}}\left({x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} +{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *