Menu Close

x-3-2022x-2021-0-1-x-1-x-




Question Number 151699 by iloveisrael last updated on 22/Aug/21
    Σ_(x^3 +2022x−2021=0) (((1+x)/(1−x))) =?
x3+2022x2021=0(1+x1x)=?
Answered by mr W last updated on 22/Aug/21
x^3 +2022x−2021=0  (x−1+1)^3 +2022(x−1+1)−2021=0  let x−1=t  (t+1)^3 +2022(t+1)−2021=0  t^3 +3t^2 +3t+1+2022t+2022−2021=0  t^3 +3t^2 +2025t+2=0  (2/t^3 )+((2025)/t^2 )+(3/t)+1=0  ⇒Σ(1/t)=−((2025)/2)  ((1+x)/(1−x))=−((x−1+2)/(x−1))=−1−(2/(x−1))=−1−(2/t)  Σ((1+x)/(1−x))=Σ(−1−(2/t))=−3−2Σ(1/t)  =−3−2×(−((2025)/2))  =2022
x3+2022x2021=0(x1+1)3+2022(x1+1)2021=0letx1=t(t+1)3+2022(t+1)2021=0t3+3t2+3t+1+2022t+20222021=0t3+3t2+2025t+2=02t3+2025t2+3t+1=0Σ1t=202521+x1x=x1+2x1=12x1=12tΣ1+x1x=Σ(12t)=32Σ1t=32×(20252)=2022
Commented by iloveisrael last updated on 22/Aug/21
thank you
thankyou
Answered by aleks041103 last updated on 22/Aug/21
((1+x)/(1−x))=((1+1−(1−x))/(1−x))=(2/(1−x))−1  x^3 +2022x−2021=0 has 3 roots by  the fundamental theorem of algebra.  ⇒Σ_(i=1) ^3 ((2/(1−x_i ))−1)=2(Σ_(i=1) ^3 (1/(1−x_i )))−3  Σ_(i=1) ^3 (1/(1−x_i ))=(((1−x_2 )(1−x_3 )+(1−x_1 )(1−x_3 )+(1−x_1 )(1−x_2 ))/((1−x_1 )(1−x_2 )(1−x_3 )))=  =((3−2(x_1 +x_2 +x_3 )+(x_1 x_2 +x_2 x_3 +x_1 x_3 ))/((1−x_1 )(1−x_2 )(1−x_3 )))  Since x_(1,2,3)  are roots of the cubic polynomial  then   x^3 +2022x−2021=(x−x_1 )(x−x_2 )(x−x_3 )  Then  (1−x_1 )(1−x_2 )(1−x_3 )=1^3 +2022.1−2021=2  Also by Vieta′s formulas  x_1 +x_2 +x_3 =0  x_1 x_2 +x_2 x_3 +x_1 x_3 =2022  Therefore  Σ_(i=1) ^3 (1/(1−x_i ))=((3−2(0)+2022)/2)=((2025)/2)  Then:   Σ_(x^3 +2022x−2021=0) (((1+x)/(1−x))) =2022
1+x1x=1+1(1x)1x=21x1x3+2022x2021=0has3rootsbythefundamentaltheoremofalgebra.3i=1(21xi1)=2(3i=111xi)33i=111xi=(1x2)(1x3)+(1x1)(1x3)+(1x1)(1x2)(1x1)(1x2)(1x3)==32(x1+x2+x3)+(x1x2+x2x3+x1x3)(1x1)(1x2)(1x3)Sincex1,2,3arerootsofthecubicpolynomialthenx3+2022x2021=(xx1)(xx2)(xx3)Then(1x1)(1x2)(1x3)=13+2022.12021=2AlsobyVietasformulasx1+x2+x3=0x1x2+x2x3+x1x3=2022Therefore3i=111xi=32(0)+20222=20252Then:x3+2022x2021=0(1+x1x)=2022
Commented by iloveisrael last updated on 22/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *