Menu Close

x-3-3x-12-0-solve-real-number-help-




Question Number 150752 by Jamshidbek last updated on 15/Aug/21
x^3 +3x+12=0  solve real number   help
$$\mathrm{x}^{\mathrm{3}} +\mathrm{3x}+\mathrm{12}=\mathrm{0}\:\:\mathrm{solve}\:\mathrm{real}\:\mathrm{number}\: \\ $$$$\mathrm{help} \\ $$
Commented by liberty last updated on 15/Aug/21
x = root(3, - root(2, 37) - 6) - (1/root(3, - root(2, 37) - 6))
Commented by liberty last updated on 15/Aug/21
Answered by mr W last updated on 15/Aug/21
Δ=1^3 +6^2 =37>0  x=(((√(37))−6))^(1/3) −(((√(37))+6))^(1/3)
$$\Delta=\mathrm{1}^{\mathrm{3}} +\mathrm{6}^{\mathrm{2}} =\mathrm{37}>\mathrm{0} \\ $$$${x}=\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{37}}−\mathrm{6}}−\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{37}}+\mathrm{6}} \\ $$
Commented by puissant last updated on 15/Aug/21
sir it is the formula of Tartaglia..?
$${sir}\:{it}\:{is}\:{the}\:{formula}\:{of}\:{Tartaglia}..? \\ $$
Commented by mr W last updated on 15/Aug/21
cardano′s
$${cardano}'{s} \\ $$
Commented by puissant last updated on 15/Aug/21
⇒ x^3 =−3x−12  x=((−6+(√(37))))^(1/3) −((6+(√(37))))^(1/3)   sorry sir..
$$\Rightarrow\:{x}^{\mathrm{3}} =−\mathrm{3}{x}−\mathrm{12} \\ $$$${x}=\sqrt[{\mathrm{3}}]{−\mathrm{6}+\sqrt{\mathrm{37}}}−\sqrt[{\mathrm{3}}]{\mathrm{6}+\sqrt{\mathrm{37}}}\:\:{sorry}\:{sir}.. \\ $$
Commented by naka3546 last updated on 15/Aug/21
may  be  :  x  =  ((((((√(37)) − 6)^2 ))^(1/3) − 1)/( (((√(37)) − 6))^(1/3) ))  x = (((√(37)) − 6))^(1/3)   −  (((√(37)) + 6))^(1/3)
$${may}\:\:{be}\:\:: \\ $$$${x}\:\:=\:\:\frac{\sqrt[{\mathrm{3}}]{\left(\sqrt{\mathrm{37}}\:−\:\mathrm{6}\right)^{\mathrm{2}} }−\:\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{37}}\:−\:\mathrm{6}}} \\ $$$${x}\:=\:\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{37}}\:−\:\mathrm{6}}\:\:−\:\:\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{37}}\:+\:\mathrm{6}} \\ $$
Commented by Tawa11 last updated on 15/Aug/21

Leave a Reply

Your email address will not be published. Required fields are marked *